JMP トレーニング JMP による生物検定法

1999年12月1日

高橋 行雄

<u>0. JMPで生物検定法</u>

1

<u>1. DIRECT ASSAY, 直接法でJMPに慣れよう</u>	6
	G
1.1. DIRECTASSAY、FINNEYの文献初 1.2. 古井デートのまた。末体 MG Brann MG Wann GAG とう	0
1.2. 文献テーダの人刀、直接、MS-EXCEL、MS-WORD、SAS から	7
1.3. データのグラフ化	8
1.4. 結果を MS-WORD へ掃出し	11
1.5. データの転置、JMP の標準データ形式へ	12
1.6. 薬剤間の比較、多重比較、分散の比較	16
1.7. 対数変換	19
1.8 効力比	21
1.9. FIT MODEL による、効力比の 95%信頼区間	22
1.10. 解析用変数、ダミー変数	27
1.11. JOIN を用いたダミー変数の作成	29
2. 50%有効量の推定	31
2.1 モルヒネの 50%鎮痛効果	31
2.2 有効率を用いた単回帰	31
2.3 ロジットとは何か	32
2.4 シグモイド曲線の直線化	33
2.5 FIT Y BY X によるロジスティック回帰分析での逆推定	34
2.5.1 反応あり・なしの表	34
2.5.2 ロジスティック回帰分析	34
2.5.3 50%有効量と、その 95%信頼区間の計算	36
 計量値に対する逆推定 	38

<u>4.</u> 3	効力比の推定	43
4.1	4種の鎮痛薬の効果	43

Semi1_	_生物検討	と法リバイ	イバル.doc
最終印	刷日時:	9/6/2005	2:43 PM

4.2 ロジットを用いた回帰直線	43
4.3 反応あり・なしの表	44
4.4 平行性の検討	45
4.4.1 FIT MODEL の使用	45
4.4.2 当てはまりの欠如、平行性の欠如	46
4.4.3 分散分析的なまとめ	47
4.5 平行線の当てはめ	48
4.5.1 FIT MODEL	48
4.5.2 4本の回帰直線	49
4.5.3 回帰係数	51
4.5.4 50%有効量の推定	52
4.5.5 効力比の計算	53
4.6 効力比の 95%信頼区間	54
4.6.1 ダミー変数の生成	54
4.6.2 切片なしのモデル	55
4.6.3 第2の切片なしモデル	56
<u>5. 複数の誤差を伴う生物検定法</u>	58

<u>65</u>

<u>6. JMPによる混合モデルの解析</u>

Semil_生物検定法リバイバル.doc 最終印刷日時:9/6/2005 2:43 PM 0. JMP で生物検定法

生物検定法(Biological Assay)とは

生物を用いて未知の化合物の生物活性を 既知の化合物の生物活性に対して 相対的に比較するために体系化された 応用統計学の一つの分野である

代表的な生物検定法 : 50 パーセント致死量の推定

生物検定法は回帰分析の応用

直線の当てはまりの欠如(Lack of Fit) 非平行性(Lack of Parallelism) 逆推定とその信頼区間 用量反応関係を論ずるために欠かせない

他の応用統計の分野では軽視

生物検定法の典型例

マウスの電気刺激反応による Morphine に対する

Drug	Dose	n	r	р	probit	logit
Morphine	0.18	103	19	0.18	4.10	-1.48
	0.48	120	53	0.44	4.85	-0.23
	0.78	123	83	0.67	5.45	0.72
Amidone	0.18	60	14	0.23	4.27	-1.18
	0.48	110	54	0.49	4.98	-0.03
	0.78	100	81	0.81	5.88	1.45
Phenadoxone	-0.12	90	31	0.34	4.60	-0.64
	0.18	80	54	0.67	5.45	0.73
	0.48	90	80	0.88	6.22	2.07
Pethidine	0.70	60	13	0.21	4.22	-1.28
	0.88	85	27	0.31	4.53	-0.76
	1.00	60	32	0.53	5.08	0.13
	1.18	90	55	0.61	5.28	0.45
	1.30	60	44	0.73	5.62	1.01

3種の鎮痛剤の反応

4種の鎮痛薬の効果

 \Box : Phenadoxone, O: Amidone, +: Morphine, ×: Pethidine

SAS とJMPによる生物検定法

SAS: PROC PROBIT

逆推定を取り扱えるのは1群の場合

プロビット変換よりむしろロジット変換 ロジスティック回帰分析として定式化

- SAS: PROC LOGISTIC, PROC CATMOD
- JMP: "Fit Y by X"、 "Fit Model"

逆推定、Y0 となる X は、

生物検定法で常用される逆推定、95%信頼区間

SAS では標準的には求められない JMP では、Inverse Predictionの問題として対応

生物検定法のための 統計パッケージとして JMP が適している

Drug	効力比	95%信頼区間	
Morphine	1	_	
Amidone	1.248	1.535, 1.024	
Phenadoxone	3.554	4.431, 2.894	
Pethidine	0.333	0.401, 0.277	

Finney による相対力価の推定値

解析手順

- 1) 回帰直線の当てはまりの欠如を評価
- 2) 回帰直線の平行性の欠如を評価
- 3) 50%有効量、logit = 0 の場合の用量を逆推定
- 4) 標準薬 Morphine との差および 95% 信頼区間
- 5) 標準薬に対する効力比を求める

平行性の欠如: 薬剤群と用量の交互作用

1. Direct Assay, 直接法で JMP に慣れよう

1.1. Direct Assay、Finney の文献例

Preparation	Strophanthus 1	Strophanthus 2	Ouabain
	(µL/kg)	(µL/kg)	(µL/kg)
Tolerances	15.5	24.2	52.3
	15.8	18.5	99.1
	17.1	20.0	47.6
	14.4	22.7	65.1
	12.4	17.0	66.8
	18.9	14.7	57.6
	23.4	22.0	49.3
		•	45.8
			66.9
Mean	16.8	19.9	61.2
Mean(log10)	1.217	1.292	1.774

Tolerance of cats for tinctures of strophathus and ouabain

Finney, D.J. (1978). Statistical Method in Biological Assay 3rd ed., Griffin, London.

Strophanthus 2 が標準品、Strophanthus 1 の効力 R は、

$$R = \frac{19.9}{16.8} = 1.18;$$

Ouabain の効力は、

$$R = \frac{19.9}{61.2} = 0.325;$$

である。それぞれの SE は、近似的に、

 $R \pm SE = 1.18 \pm 0.120$, $R \pm SE = 0.325 \pm 0.036$

となる。

このデータを、対数変換して、差の分散から正確に計算した場合の効力比と95%信頼 区間は、それぞれ、

1.19 (0.95, 1.51),

0.330 (0.264, 0.412)

となる。

1.2. 文献データの入力、直接、MS-Excel、MS-Word、SAS から

MS-Word で作成されている表を、JMP に取り込んでみよう。すでに、Finney_Data.doc が用意されているので、MS-Word で開いておく。次に、JMP を立ち上げる。

W Miero	osoft Word			
7r1W	ファイル(E) 編集(E) 表示(V) 挿入(0) 書式(0) ソール(T) 罫線(K) ウィントウ(W) ヘルブ(H)			
	¥ 🔲 🚑 🖪 🖤 🗌	🖁 🛍 🍕 🗠 -	a - 🔍 🕐 🗗 🗄	🛏 🔜 🕼 🚜 🔯 🖉 🖄
		105 D Z		
	3C ▼ Times New Ro	man ▼ 10.3 ▼ B Z		
🕎 Finne	ey_Data.doc			
	••••	K · · 40 · · · · · · · · 60	• • • • • 80 • • • • • •	100+ + + + + + 120+ + + 🗖
	 Televenes of esta fo		a and analysis (
	Toterarice of cats to	r unctures stropnatiu	s anu ouaoami≁	
	Preparation	Strophanthus 1+	Strophanthus 24	Uuabain 🖉 🧬
		(µL/kg)₽	(µL/kg)₽	(µL/kg)+
i i i	Tolerances₽	15.5@	24.2+2	<u> </u>
	ą.	15.8₽	18.54	99.1@
	ę	17.1+	20.0+2	47.60 🕫
	ę	14.4+2	22.7+2	65.1 <i>+</i> +
	¢.	12.4+2	17.0+2	66.8+ +
₽	ą	18.9+2	14.7+2	57.60 0
	ą	23.4+2	22.0+2	49.3 <i>e</i>
	ę	4.	4.	45.80
	ę.	<i>.</i> ب	ب .	66.9-0
	Mean₽	16.8+	19.9#	61.20
	Mean(log10)₽	1.217@	1.292@	1.774
	Finney, D.J. (1978). Statistical Method in Biological Assay 3 rd ed., Griffin, London e			
	1 ^°>' 1 セクション	7 1/1 位置 50	mm 4行1桁	記録 変更 拡張 📃 🌽

MS-Word でデータ領域をコピーする。次に JMP に移り、白紙のテーブルに貼り付ける。 変数名、Column 1 をダブルクリックして好きなように変更する。うまく行かない場 合は、Finney2_3_1.jmp ファイルを開く。

🚸 JMP				_ 🗆 🗵
<u>F</u> ile <u>E</u> dit <u>T</u> ables <u>R</u>	ows <u>C</u> ols <u>A</u> r	alyze <u>G</u> raph	Too <u>l</u> s <u>W</u> indow	<u>H</u> elp
🛃 Untitled 1				- 🗆 🗵
3 Cols				<u> </u>
9 Rows	Column 1	Column 2	Column 3	
1	15.5	24.2	52.3	
2	15.8	18.5	99.1	
3	17.1	20	47.6	
4	14.4	22.7	65.1	
5	12.4	17	66.8	
6	18.9	14.7	57.6	
7	23.4	22	49.3	
8	?	?	45.8	
9	?	?	66.9	
				v
0 \ 0 Selected	•			•

1.3. データのグラフ化

テーブルメニューの Analyze から Distribution of Y を選択する。3 変数全て Add し、 OK とする。

DISTRIBUTION OF Y:			×
Select one or	more Ys for di	stribution.	
Columns from Finney2_3_1			
© Stro.1 © Stro.2 © Ouabain	♥ Add ♥	Stro.1 Stro.2 Ouabain	4
	Remove		7
	♯Freq サ		
	∜∟ы ∜		
OK	Cancel	Help	

左隅の レ をクリックし、Uniform Axes を選択し、3 種の棒グラフの目盛りを同じに して比較しやすいようにする。

手のツールを選び、棒グラフ上で動かし、見栄えのするグラフにする。

幹葉表示のグラフは、> のプルダウンメニューにある。実行してみよう。

```
次のような機能が 
レのプルダウンメニューにある。試してみよう。
```

Display Options for Distribution of Y

The second secon				- ··· · · · · · · · · · · · · · · · · ·
I nese ontions are toggles 1	1 the display options	$ \vee not$	n-iin menii icon	on the lower border
These options are toggies in	i une display options		g up menu icon	on the lower border.

Text Report	shows or hides tables and text reports of all responses		
Histogram	shows or hides histograms of all responses		
Mosaic Plot	shows or hides mosaic plots of nominal/ordinal responses		
Outlier box Plot	shows or hides outlier box plot of continuous responses		
Quantile Box Plot	shows or hides quantile box plot continuous responses		
Normal Quantile Plot	shows or hides normal quantile plot of continuous responses		
Smooth Curve	fits a smooth curve to continuous variable histograms using		
	nonparametric density estimation		
Horizontal Layout	alternates histograms between vertical and horizontal layout		
Normal Curve	imposes a normal curve on continuous response histograms		
Count Axis	adds a count axis on nominal/ordinal histograms		
Prob Axis	adds a probability (percent) axis on nominal/ordinal responses		
Uniform Axes	scales axes of all histograms the same		

1.4. 結果を MS-Word へ掃出し

テーブルメニューの Edit で Copy を選択し、MS-Word に貼り付ける。次が、その見本である。

テキスト部分のみのコピーもできる。Copy as Text でコピーし、MS-Wor に張り込み、3 段組にし、さらにタブにより書式を整えたものが、次の結果である。

Stro.1		Stro.2		Ouabain	
Moments		Moments		Moments	
Mean	16.78571	Mean	19.87143	Mean	61.16667
Std Dev	3.55595	Std Dev	3.37032	Std Dev	16.47483
Std Error Mean	1.34402	Std Error Mean	1.27386	Std Error Mean	5.49161
Upper 95% Mean	20.07442	Upper 95% Mean	22.98846	Upper 95% Mean	73.83046
Lower 95% Mean	13.49701	Lower 95% Mean	16.75440	Lower 95% Mean	48.50287
Ν	7.00000	Ν	7.00000	Ν	9.00000
Sum Weights	7.00000	Sum Weights	7.00000	Sum Weights	9.00000

1.5. データの転置、JMPの標準データ形式へ

		共逐	変量	反応
群	Animal No.	<i>x</i> ₁	<i>x</i> ₂	у
A_1	1	<i>x</i> _{1,1,1}	<i>x</i> _{2,1,1}	<i>y</i> _{1,1}
	2	<i>x</i> _{1,1,2}	<i>x</i> _{2,1,2}	<i>y</i> _{1,2}
	:	:	:	:
A_2	11	<i>x</i> _{1,2,11}	<i>x</i> _{2,2,11}	<i>Y</i> _{2,11}
	12	<i>x</i> _{1,2,12}	<i>x</i> _{2,2,12}	<i>Y</i> _{2,12}
	•	:	:	:

JMP のデータの標準形は、1 動物当たり1行の形式である。

論文の表を、JMP 形式に整えてみよう。

Stack Columns の機能を使う。これは、横に展開しているデータを縦方向にする。

🚸 JM	P										_	
<u>F</u> ile	<u>E</u> dit	Tables	<u>R</u> ows <u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	<u>W</u> indow	<u>H</u> elp				
			Group/Sum	nmary		🛃 F	inney2_3_1				_	□×
		1	•	·			3 Cols	C		C 🗌	0	<u> </u>
			Subset			9 R	lows	Stro	.1	Stro.2	Ouabain	
		-					1		15.5	24.2	52.3	
		Č B	Sort				2		15.8	18.5	99.1	
							3		17.1	20.0	47.6	
			Stack Colu	imns			4		14.4	22.7	65.1	
		1	Solit Colus				5		12.4	17.0	66.8	
			Spin Colui	IIIS			6		18.9	14.7	57.6	
		G.	Transpose				7		23.4	22.0	49.3	
		.800	Split Columns Transpose Concatenate				8		?	?	45.8	
		Ŧ	Concatena	ite			9		?	?	66.9	
		[++[]	Join									-
						0\0	Selected					▶
		lable <u>i</u>	nto E E									
		+ <u>E</u> valua Attribu	te rormulas tes									
•												
_		- Decign	Evperiment									

🤣 JMP Help				_ 🗆 ×					
ファイル(E) 編集(E) しおり(M) オフジョン(Q)) ^ルブ(<u>H</u>)								
目次(C) 検索(S) 戻る(B) 印刷(P) ≤<	≥>	<u>E</u> xit							
Stack Columns				<u> </u>					
The Stack command creater :	a now da	ta tablo	from the a	ctivo tablo					
by stacking specified columns i	nto a sin	ale new	column. Th	ne values					
in the other columns are preserved in the new data table.									
			O - I	-41					
 Select each column to be sta add it to the Stacking Column 	acked fro ne liet hv	om the I I clicking	COlumns II	st and d buttop					
All columns in the Stacking	Columr	ns list a	re stacked	or piled					
one after another in the order t	hey appe	ear in th	e list. You d	an					
remove a column from the list b	y selecti	ng its na	ame and cli	cking on					
the Remove button									
Table AB New tabl	e with col	umns A	and B stack	ed					
	2 Cols	N							
3 Rows A B 6 Row	vs	_Stacke	dID_						
	1	al Li	A						
3 a4 b3	2	а3	A						
	4	ь2	В						
	5	а4	A						
6 b3 B									
Optionally, enter names in the s	Stacked	l Colun	nn Name a	and Type					
Column boxes to specify name	es in the	new tak	ole for the c	olumn of					
stacked values and the column containing the original column									
stacked values and the column containing the original column									
names. By default, these name	es are _S	tacked	_ and _Typ	e					

3 変数を選択し、stack ボタンをクリック、Name of Stacked Cols を Y に変更、Name of ID Column に Drug を入力し、OK をクリックする。

する。

IMP 🚸 🕹								- 🗆 ×
<u> </u>	ibles <u>R</u> ows	<u>C</u> ols <u>A</u>	nalyze <u>G</u> ra	aph Too <u>l</u> s	s <u>W</u> indow <u>H</u> elp			
Finney2_3_1				JN	🛃 Untitled 3		_ [J X
3 Cols				<u> </u>	2 Cols			
9 Rows	1:Stro.1	2:Stro.2	3:Ouabain		27 Rows	Y 7	Drug	
1	15.5	24.2	52.3		1	15.5	1:Stro.1	
2	15.8	18.5	99.1		2	24.2	2:Stro.2	
3	17.1	20.0	47.6		3	52.3	3:Ouabain	
4	14.4	22.7	65.1		4	15.8	1:Stro.1	
5	12.4	17.0	66.8		5	18.5	2:Stro.2	
6	18.9	14.7	57.6		6	99.1	3:Ouabain	
7	23.4	22.0	49.3		7	17.1	1:Stro.1	
8	?	?	45.8		8	20.0	2:Stro.2	
9	?	?	66.9		9	47.6	3:Ouabain	
	<u> </u>			-	10	14.4	1:Stro.1	
0 \ 0 Selected	4			₽.	11	22.7	2:Stro.2	
					12	65.1	3:Ouabain	
					13	12.4	1:Stro.1	
					14	17.0	2:Stro.2	
			1		15	66.8	3:Ouabain	
💠 Stack Columns:			×		16	18.9	1:Stro.1	
Columns from Finney2_3_1					17	14.7	2:Stro.2	
1:Stro 1	1-Stro 1				18	57.6	3:Ouabain	
2:Stro.2	2:Stro.2				19	23.4	1:Stro.1	
3:Ouabain	3:Ouabain				20	22.0	2:Stro.2	
Bemove					21	49.3	3:Ouabain	_
	1		- H		22	?	1:Stro.1	
	Mana of Sta	akad Cala			23	?	2:Stro.2	_
v	Name or ota	icked Cors			24	45.8	3:Ouabain	_
·	Y				25	2	1:Stro.1	
Output table:	Name of ID	Column :			26	?	2:Stro.2	
Uptitled 3	Deur				27	66.9	3:Ouabain	
	lorug				0 (U Selected			
OK Cancel		Help						
	·							

Stack された JMP データを Tables メニューの Sort を選択し、Y を Cols テーブルメニューの Move to Last により、見やすくする。ファイル名を、好きな名前にして保存する。

🚸 J	MP										_ 🗆 >	<
<u>F</u> ile	<u>E</u> dit <u>T</u> al	bles	<u>R</u> ows (<u>C</u> ols <u>A</u> nalyze	<u>G</u> raph	n T	oo <u>l</u> s	<u>W</u> indow	<u>H</u> elp			
	😤 Untitled	H 1		_ [🛃 U	ntitled 2		_		1
	20	ols	0					2 Cols		0 0	<u> </u>	
	27 Rows	\$	Y	Drug			27	Rows	Drug	Y		
		1	15.5	1:Stro.1				1	1:Stro.1	15.5		
		2	24.2	2:Stro.2				2	1:Stro.1	15.8		
		3	52.3	3:Ouabain				3	1:Stro.1	17.1		
		4	15.8	1:Stro.1				4	1:Stro.1	14.4		
		5	18.5	2:Stro.2				5	1:Stro.1	12.4		
		6	99.1	3:Ouabain				6	1:Stro.1	18.9		
		7	17.1	1:Stro.1				7	1:Stro.1	23.4		
		8	20.0	2:Stro.2				8	1:Stro.1	?		
		9	47.6	3:Ouabain				9	1:Stro.1	?		
		10	14.4	1:Stro.1				10	2:Stro.2	24.2		
		11	22.7	2:Stro.2				11	2:Stro.2	18.5		
		12	65.1	3:Ouabain				12	2:Stro.2	20.0		
		13	12.4	1:Stro.1				13	2:Stro.2	22.7		
		14	17.0	2:Stro.2				14	2:Stro.2	17.0		
		15	66.8	3:Ouabain				15	2:Stro.2	14.7		
		16	18.9	1:Stro.1				16	2:Stro.2	22.0		
		17	14.7	2:Stro.2				17	2:Stro.2	?		
		18	57.6	3:Ouabain				18	2:Stro.2	?		
	0 \ 0 Selecte	ed	•				0\0	Selected	4		► ·	-

1.6. 薬剤間の比較、多重比較、分散の比較

説明変数が1変数、ここでは薬剤の種類、反応が1変数の場合の統計解析は、Analyze テーブルメニューの Fit Y by X で実行する。 X 軸に Drug を、Y 軸に Y を選択し、 OK をクリックすると、次の散布図を得る。

FitY by X Select X and Y columns using Columns from Untitled 2 NDTrug	buttons.		
	Y	File Edit Tables Rows Cols Analyze Graph Tools Window H	elp
	<u> </u>	🛃 Untitled 2: Y by X	
Continuous Nominal	# Weight # # Freq # # Label # Grouped, Means, One-way Anow OK Cancel	Y By Drug) 100.0 80.0 80.0 60.0 20.0 20.0 1:Stro.1 2:Stro.2 3:Ouabain Drug Analysis Display ■	

分散の検定を行う。 > ボタンの UnEqual Variances を選択する。

Copy as Text により結果を MS-Word に張り込み、タブで形式を整える。分散が有意に 異なり、このままでは、平均値の比較に問題がある。

Y By Drug

Tests that the Variances are Equal

Level	Count	Std Dev	MeanAb	sDif to Mean	MeanAbsDif to Median
1:Stro.1	7	3.55595	2.	58367	2.48571
2:Stro.2	7	3.37032	2.	68980	2.88571
3:Ouabain	9	16.47483	11	.82963	12.02222
Test		F Ratio	DF Num	DF Den	Prob>F
O'Brien[.5]		1.5221	2	20	0.2425
Brown-Forsythe		4.4898	2	20	0.0245
Levene		4.8303	2	20	0.0194
Bartlett		9.5496	2	?	<.0001

Welch Anova testing Means Equal, allowing Std's Not Equal

F Ratio	DF Num	DF Den	Prob>F
29.3463	2	12.919	<.0001

Analyze テーブルメニューの Fit Y by X を実行する。 X 軸に Drug を、Y 軸に Y を 選択し、OK をクリックし、散布図を作成する。Dunnett の多重比較により平均値の比 較をおこなう。さらに、順位和検定も試みてみよう。

Eile Edit Tables Rows Qols Analyze Graph Tools Window Help (Wilcoxon / Kruskal-Wallis Tests (Rank Sums))	🚸 JMP 🚽						- 🗆 ×		
(Wilcoxon / Kruskal-Wallis Tests (Rank Sums)) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 1:Stro.1 7 41 5.8571 -2.840 2:Stro.2 7 64 9.1429 -1.303 3:Ouabain 9 171 19.0000 3.937 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	<u>F</u> ile <u>E</u> d	lit <u>T</u> ables	<u>R</u> ows <u>C</u>	⊇ols <u>A</u> nalyze	<u>G</u> raph Too <u>l</u> s	: <u>W</u> indow <u>H</u> elp			
Level Count Score Sum Score Mean (Mean-Mean0)/Std0 1:Stro.1 7 41 5.8571 -2.840 2:Stro.2 7 64 9.1429 -1.303 3:Ouabain 9 171 19.0000 3.937 1-way Test, Chi-Square DF Prob>ChiSquare DF Prob>ChiSquare	Micoxo	on / Kruskal-V	Vallis Tests	(Rank Sums)			<u> </u>		
Level Count Score Sum Score Mean (Mean-Mean0)/Std0 1:Stro.1 7 41 5.8571 -2.840 2:Stro.2 7 64 9.1429 -1.303 3:Ouabain 9 171 19.0000 3.937 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq				<u> </u>					
1:Stro.1 7 41 5.8571 -2.840 2:Stro.2 7 64 9.1429 -1.303 3:Ouabain 9 171 19.0000 3.937 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	Level	I	Count	Score Sum	Score Mean	(Mean-Mean0)/Std0			
2:Stro.2 7 64 9.1429 -1.303 3:Ouabain 9 171 19.0000 3.937 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	1:St	tro.1	7	41	5.8571	-2.840			
3:Ouabain 9 171 19.0000 3.937 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	2:St	tro.2	7	64	9.1429	-1.303			
1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	3:0	uabain	9	171	19.0000	3.937	'		
ChiSquare DF Prob>ChiSq	1-way Test, Chi-Square Approximation								
		ChiSquare	DF	Prob≻ChiSq					
16.5714 2 0.0003	II - '	16.5714	2	0.0003					
	Щ								

1.7. 対数変換

Y について対数変換を行い解析してみよう。Cols テーブルメニューの New Column を実行し、計算式 Formula を選択する。常用対数の計算式を作成する。うまくできな い場合は、Finney2_3_1_T.jmp を開く。

Dunnett の多重比較による平均値の比較を、生データの場合と同じように行ってみよう。

1.8 効力比

対数変換した場合に、生データでの効力比は、antilog10(差)により計算できる。

log10(Y) By Drug

Means Comparisons

Dif=Mean[i]-Mean[j]	3:Ouabain	2:Stro.2	1:Stro.1
3:Ouabain	0.000000	0.481851	0.557392
2:Stro.2	-0.48185	0.000000	0.075541
1:Stro.1	-0.55739	-0.07554	0.000000

R [(2:Stro.2) – (1:Stro.1)] = 10^{0.075541} = 1.189984 R [(2:Stro.2) – (3: Ouabain)] = 10^{-0.48185} = 0.32972

さて、95%信頼区間は、どのようにして求めるのだろうか?

1.9. Fit Model による、効力比の 95% 信頼区間

Fit Y by X では、薬剤間の差の検定は実施してくれるが、その分散は表示されない。 そこで、**Fit Model** により計算してみよう。Y 軸に **log10(y)** を選択し、説明変数の領域 に、**Drug** を Add し、**Run Model** をクリックする。これは、1 元配置分散分析を行うこ とになる。

🚸 JN	1P								_ 🗆 ×
<u>F</u> ile	<u>E</u> dit	<u>T</u> ables	<u>R</u> ows	<u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	<u>W</u> indow	<u>H</u> elp
-	Finney:	2_3_1_stac	sk: Mode	I.					×
	Drug Y log10(m			> Y >		g10(Y)		Â
					> Weight > Freq				
	> Ad > Gro > Nes	d > ss > st >	Drug						4
Ef Ma	fect cros:								Y
De	gree:	2	R	emove	E	ffect A	ttribut	es: 💽	
	No Int	ercept	Get	: Model	St	andard L	.east So	juares	-
	Defer	Plots	Sav	e Mode	l Hel	p Cl	ose	Run Mod	el

🚸 JI	MP									_ [X
<u>F</u> ile	<u>E</u> dit	<u>T</u> ables	<u>R</u> ows	<u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	<u>₩</u> indow	<u>H</u> elp		
*	Finney2	_3_1_stacl	k: Model	Fit						_ 0	×
Resp	onse: I	log10(Y)									í
(Su	nmary o	rf Fit									
R	Square	Э			0.89	38223					
R	Square	e Adj			0.8	38045					
R	ot Me	an Squ	are Er	ror	0.0	32159					
Me Me	ean of	Respo	nse		1.4	58164					
	oserva	ations (d	or Sum	n VVgts	s)		ļ				
Par	ameter l	Estimates) 🖪)	
Ter	m				Estima	ate	Std Error	t Ratio	o Pr	ob> t	
Int	ercept	t o			1.428041	13 0.0	019352	73.79	3 <.0	001	
Dr	ug[1:5	Stro3:0	Duaba	ļ	-0.2109	/8 U.U	J279U9	-7.5t	i <.L		
	ug[2:5	Stro3:0	Juaba]	-0.13543	37 U.L	127909	-4.85) <.L	1001	
Eff	ect Test)		
Sou	irce	Nparm	DF S	Sum of S	quares	F Ra	tio	Prob≻F			
Dr	ug	2	2	1.499	91382	88.254	41 ·	<.0001	J		-
\checkmark) 🗵 ∢								_	Þ	

標準出力では、薬剤間の差の分散は得られない。レ をクリックし、Custom Test を 選択する。

📀 🕶 Plot Y by Predicted						_ 🗆 ×
<u>F</u> ili Plot Residual	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	<u>W</u> indow	<u>H</u> elp	
📻 🕶 Plot Effect Leverage						
× Show Points □ × Show Line of Fit	-0.21001	0 0.0 37 0.0	27909	-4.85	, 5 <.0	
 Show Confidence Curves Connect Points to Line 	Squares	FRat	io	Prob>F]	
Power Details	91382	88.254	1	<.0001		
Custom Test	<u> </u>				·	
Seq SS (Type 1)						
Inverse Prediction						
Durbin-Watson test						
Correlation of Est.						

次の画面が出てくるので、Add Column を2回クリックする。全てのセルが0となっていることを確認し、表示通りに数値を入力する。この意味については、以下に説明する。

🚸 J	MP								_	
<u> </u>	<u>E</u> dit	<u>T</u> ables	<u>R</u> ows	<u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	<u>W</u> indow	<u>H</u> elp	
*	Finney2,	3_1_stack	: Model	Fit					_ [Ι×
[Cu	stom Tes	st)								
>.										
Par	ameter	_				4		4	4	
llint	ercepi					1		1	1	
Dr	ug[1:5	Stro3:0	Duaba]			1		0	-1	
Dr	ug[2:5	Strol-3:0	Duaba]			0		1-1		
Cli	ck and	1 Type A	Above t	:o forr	n hypoth	esis te	st.			
))	(Add (Columr	n)(H	elp)					
	\$) ⊛ ∢									Ì

Done によって実行する。次の結果が得られる。表示上の Estimate が 3 種の薬剤の 平均値の推定値となっている。

🚸 JN	мР									_ 🗆 ×
<u>F</u> ile	<u>E</u> dit	<u>T</u> ables	<u>R</u> ows	<u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	<u>W</u> indow	<u>H</u> elp	
🛃 F	inney2	3_1_stack	c Model	Fit					-	
Cus	tom Tes	;t) 🕨								
^D1	1, ^D2	, ^D3								
Para	ameter									
Inte	ercept					1		1		1
Dru	ug[1:S	Stro3:0	Duaba]			1		0	-	-1
Dru	ug[2:S	Stro3:0	Duaba]			0		1	-	-1
Es	timate	9 1.2	17063	3192	1.2926	045549	1.77	445563	84	
Sto	d Erro	r 0.0	348328	3711	0.0348	328711	0.03	3071970	48	
t R	atio	34.	940094	4812	37.10	875715	57.7	627828	71	
Pro	ob> t	2.1	01119	e-19	6.4119	196e-20	9.9	66921e-3	24	
<u>ISS</u>	;	10).3687	1038	11.695	785747	28.3	382353	14	
SI SI	um of	Square	s 51	0.4027	731441					
Νι	umera	tor DF			3					
F	Ratio		19	978.13	363892					
Pr	rob > l	=	6	.7525	38e-25					
										╶╴╴╴╴

JMP での解析用の変数(ダミー変数)は、次のように定義されている。

	d_1	d_2
1:Stro.1	1	0
2:Stro.2	0	1
3:Ouabain	-1	-1

したがって、薬剤ごとの推定値は、次の式によって求められる。

$$\begin{bmatrix} \hat{D}_1 \\ \hat{D}_2 \\ \hat{D}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1.428 \\ -0.211 \\ -0.135 \end{bmatrix} = \begin{bmatrix} 1.217 \\ 1.293 \\ 1.774 \end{bmatrix}$$

Semi1_生物検定法リバイバル.doc 最終印刷日時: 9/6/2005 2:43 PM 薬剤間の差、D2-D1 と D2-D3 は、次のようにして求めることができる。

🚸 J	MP								- 🗆 ×		
<u>F</u> ile	<u>E</u> dit	<u>T</u> ables	<u>R</u> ows	<u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	<u>W</u> indo	w		
<u>H</u> elp	•										
	😤 Finn	ey2_3_1_s	taok: Mo	del Fit					_ 🗆 🗵		
Í	Custom	Test									
	>D	2-D1, D	2-D3								
	Parame	ter				_		_			
	Interc	ept				U		יוט			
	Drug[1:Stro	3:Oual	oa]		-1		1			
	Drug	2:Stro	3:Oual	oa]		12					
	Click and Type Above to form hypothesis test.										
	Don	e) (Ad	d Colu	imn) I	Help						
L L	<u>(</u>										
	∠] \$] ≻								×		

🚸 JI	ИР								_ 🗆 ×
<u>F</u> ile	<u>E</u> dit	Tables	<u>R</u> ows	<u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	<u>₩</u> indow	<u>H</u> elp
🛃 F	inney2_	3_1_stack	: Model	Fit				-	
Cus	tom Tes	t) 🕨							
>.	D2-D	1, S2-D)3						
Para	meter .					_			
Inte	ercept					U 1			
UDri	1g[1:5	tro3:0	uabaj		-	1			
	ug[2:5	tro3:0	ларај	7057	0 4040	1		2	
	umate L Error	· 0.0	100811	'307 107	-0.4810	100001			
	i ⊏i i Ui otio	0.04	18201 294750	1107 0451	10.04044	+30201 109177			
	auu sh≲ltl	1.0. 0.1z	109750 109750	9401 3070	0 0000	+82177 100017			
Iss	no~ld	0.14	199772	1096 1096	0.00000	105876			
60	una of	Cauara	- '	1 4004	0.0142	100010			
I SU	imoro	Square	S	.499	138194 ว				
	unera Dotio		Q	2 2541	2				
Pr	nh > F	=	0	00000	100000				
Ľ	00 - 1		0.	00000					-
⊻ \$	• 🗵								

$$\begin{bmatrix} \hat{D}_1 - \hat{D}_2 \\ \hat{D}_3 - \hat{D}_2 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0.1428 \\ -0.211 \\ -0.135 \end{bmatrix} = \begin{bmatrix} 0.07554 \\ -0.48185 \end{bmatrix}$$

 $SE(\hat{D}_1 - \hat{D}_2) = 0.04926$

 $SE(\hat{D}_3 - \hat{D}_2) = 0.04644$

		E	SE	10 [^] E	10^(E-SE)	10^(E+SE)
R±SE	D1-D2	0.0755	0.0493	1.1900	1.0624	1.3329
	D3-D2	-0.4819	0.0464	0.3297	0.2963	0.3669
				t	95%L	95%U
				2.086	0.9393	1.5076
				2.086	0.2638	0.4121
				2.086	0.2638	0.4

以上の結果を基に、95%信頼区間を antilog により計算する。

1.10. 解析用変数、ダミー変数

薬剤間の差の検定を行うためには、JMP のダミー変数は面倒である。自らダミー変数 を作成したほうが簡単に薬剤間の差、および、その分散を求めることができる。 Finney2_3_1_T.jmp を開いてみよ。

次に、 $\overline{\text{Fit Model}}$ で、説明変数(独立変数)に D_1 と D_3 を Add する。

	🚸 JMP									
	<u>F</u> ile <u>E</u> dit	Tab	oles <u>R</u> ows	<u>C</u> ols	<u>A</u> na	lyze <u>G</u> rap	h Too <u>l</u> s	<u>W</u> indow _	<u>H</u> elp	
	🔀 Finney2	3 1 1	Г						_ [I X
	6 Cc	ols		0		<u>п</u>	0 0	0 0		*
	27 ROVAS		Drug	D1	-	D2	D3			
	211(0003	1	1:Stro.1		1	0	0	15.5	1,190	
		2	1:Stro.1		1	- 0	- 0	15.8	1.199	
		3	1:Stro.1		1	- 0	- 0	17.1	1.233	
		4	1:Stro.1		1	0	0	14.4	1.158	
		5	1:Stro.1		1	0	0	12.4	1.093	
		6	1:Stro.1		1	0	0	18.9	1.276	
		7	1:Stro.1		1	0	0	23.4	1.369	
		8	1:Stro.1		1	0	0	?	?	
		9	1:Stro.1		1	0	0	?	?	
		10 1	2:Stro.2		0	1	0	24.2	1.384	
		11 :	2:Stro.2		0	1	0	18.5	1.267	
		12	2:Stro.2		0	1	0	20.0	1.301	
		13	2:Stro.2		0	1	0	22.7	1.356	
		14 3	2:Stro.2		0	1	0	17.0	1.230	
		15	2:Stro.2		0	1	0	14.7	1.167	
		16 3	2:Stro.2		0	1	0	22.0	1.342	
		17 🗄	2:Stro.2		0	1	0	?	?	
		18 :	2:Stro.2		0	1	0	?	?	
		19	3:Ouabain		0	0	1	52.3	1.719	
		20 3	3:Ouabain		0	0	1	99.1	1.996	
		21	3:Ouabain		0	0	1	47.6	1.678	
		22 3	3:Ouabain		0	0	1	65.1	1.814	
		23 :	3:Ouabain		0	0	1	66.8	1.825	
JMP			_ 🗆	×	0	0	1	57.6	1.760	
le <u>E</u> dit <u>T</u> ables <u>R</u> ows <u>C</u> ols <u>A</u> nalyze <u>G</u> raph	n Too <u>l</u> s	₩in	dow <u>H</u> elp	_	U	U	1	49.3	1.693	_
🕆 Einnev2 3 1 T: Model			X		U	U	1	45.8	1.661	_
					U	U	1	66.9	1.825	
	log(Y)		<u> </u>							~
CD2			~							
CD3										
Clog(Y)										
> Add > D1			<u> </u>							
> Cross >										
> Nest >										
Effect			-							
Macros:			_							
Degree: 2 Remove Effect	Attribute	s:								
No InterceptGet ModelStandard	Least Squ	Jare	s 🔻							
Defer Plots Save Model Help C	lose	Run	Model							

.IMP <u>F</u>ile <u>E</u>dir 👶 Finne

> Effect Macros Degree: ∏ No In 🗌 Defer

D1 と D3 の推定値が、この場合には、(D2-D1)、および (D2-D3) のなっている ことを以前の結果と比較してみなさい。

🚸 JMP						_ [×
<u>F</u> ile <u>E</u> dit <u>T</u> ab	les <u>R</u> ows	<u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s		
<u>W</u> indow <u>H</u> elp							
🔀 Finney2_3_1_1	T: Model Fit					_ 🗆	×
Response: log(Y)						
Summary of Fit)			Ĵ			
RSquare			0.8	98223			
RSquare Ad	j		0.8	88045			
Root Mean S	Square Err	or	0.0	92159			
Mean of Res	sponse		1.4	58164			
	s (or Sum	vvgts	5)				
Parameter Estima	ates) 🗾						
Term	Estima	ate	Std Error	t Ra	atio	Prob> t	
Intercept	1.292604	16 O	.034833	37.	11 <	.0001	
	-0.07554	11 D	0.049261 -1.5			.1408	
	0.481851		.046444	10.	3/ <	.0001	
⊻ \$ ⊛ ∢						►	

Custom Test で、薬剤ごとの推定値を練習のつもりで計算してみよう。

🚸 JN	1P								_ 🗆 ×
<u>F</u> ile	<u>E</u> dit	<u>T</u> ables	<u>R</u> ows	<u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	<u>W</u> indow	<u>H</u> elp
🛃 F	inney2	.3_1_T: M	odel Fit					_	
Cus	tom Te:	st) 🕨							──────
>.[D1, D	2, D3 .							
Para	ameter								
Inte	ercept	t		1		1		1	
D1				1		0		0	
D3				0		0		1	
Es	timate	e 1.2	17063	8192	1.2926	045549	1.77	7445563	84 🛛 🛔
Sto	1 Erro	r 0.C	134832	8711	0.0348	328711	0.03	3071970	48 🛛
t R	atio	34	.94009	4812	37.10	875715	57.7	7627828	71
Pro	ob> t	2.1	101119	e-19	6.4119	96e-20	9.9	66921e-	24
ISS	;	11	0.3687	1038	11.695	785747	28.3	3382353	14
S	um of	Square	es 5	0.402	731441				
Νι	umera	ator DF			3				
F	Ratio	_	1	978.1	363892				
Pr	op >	F	6	3.7525	38e-25				
	9 🔀 ◀					•) ·

1.11. Join を用いたダミー変数の作成

Tables テーブルメニューの Join を使うとダミー変数を簡単に正確に作ることができる。DRUG.jmp がダミー変数を作りたい表とする。Dummy.jmp にあらかじめダミー変数行列を定義しておく。

🚸 JMP												_ [
<u>F</u> ile <u>E</u> dit	<u>T</u> ables <u>R</u>	ows <u>C</u> ols	<u>A</u> nalyze	Graph	Too <u>l</u> s <u>V</u>	<u>(</u> indov	v <u>H</u> elp						_
😤 DRUG			_ 🗆	× 🛃	Dummy						_		
	2 Cols				_ 6 Co	ls [c		0				C 📥	
8 Rows		DRUG	У	5	Rows		A	A1	A2	A3	A4		
	1	1	11			1	1	1	0	0	0		
	2	1	12			2	2	0	1	0	0		
	3	2	24			3	3	0	0	1	0		
	4	2	25			4	4	0	0	0	1		
	5	2	21			5	5	0	0	0	0		
	6	3	31									-	
	7	3	38	01	0 Selecter	3 🔳						Þ	
	8	3	35										
				V									
U \ U Selecte	d	•	•										
		1											
		M Untitle											
				ലപ	입니면	۱u	٩U	ലപര					
		8 Rows		DRUG	У	A	A1	A2 /	43				
			1	1	11	1	1	U	0				
			2	1	12	1	1	U	0				
			3	2	24	- 2	0	1	0				
			4	2	25	2	0	1	0				
			0	2	21	2	0	1	1				
			7	3	20	3	0	0	1				
				0	30	2	0	0	1				
			0	3	- 30	3	U	U					
		0 \ 0 Selec	ted	4									

🚸 Join Tables:	X
Join DRUG With Dummy Untitled 1 Dummy DRUG	Matching Specification:
	(by Matching Cols)
Untitled 2	
Join	Cancel Help

💠 Join Tables by Matching Columns: 🛛 🕅								
DRUG		Dummy						
DRUG Y	Match	A A1 A2 A3 A4 A5						
×	Remove		4					
Drop Multiples		🗖 Drop Multiples						
🔲 Include Non-matches		🗖 Include Non-matches						
Done	Cancel	Help						

🚸 Join Tables by Matching C	olumns:	X
DRUG		Dummy
DRUG Y	Match	A A1 A2 A3 A4 A5
DRUG	Remove	A A
Include Non-matches		Include Non-matches
Done	Cancel	Help

🚸 Join Tables:	×				
Join DRUG With Dummy Untitled 1 Dummy DRUG	Matching Specification: C By Row Number C Cartesian				
Output Table Name: Untitled 2	© by Matching Cols Select Columns Cancel Help				
<u>i</u>					

2. 50%有効量の推定

2.1 モルヒネの 50% 鎮痛効果

JMP データファイル Morphine.jmp を開く。

Morphine.jmp は、フォルダ c: ¥ JMP ¥ HandsOn99 ¥ Bioassay にある。

Open Data Table							? ×]			
ファイルの場所(!):	NL 🕞 🛛	/IP_HandsO	n99_Bioassay	• Ē		::: III					
Finney.jmp Morphine01.jmp Morphine01est.jmp Finney01.dummy.jmp Finney01dummy.jmp											
Morphine.jmp	Ψ										
, ファイル名(N):	🚸 JMP -	[Morphine] Edit Tel) Des Rows Cols	Analyza	Graph	Tools	Window	Help		-	
ファイルの種類①:	X Tue	8 Cols							0		
	3 Rows		Drug	LogX	n	0:r	1:(n-r)	р	logit	probit	
🔲 Select Colu	+	1	Morphine	0.18	103	19	84	0.184	-1.486	4.102	
	+	2	Morphine	0.48	120	53	67	0.442	-0.234	4.853	
	+	3	Morphine	0.78	123	83	40	0.675	0.730	5.453	
											-
	0 \ 0 Selec	ted	•								

2.2 有効率を用いた単回帰

50%有効量とは、50%のマウスに鎮痛効果が認められる用量である。有効率を 用いて単回帰分析を行ってみよう。

Fit Y by X Select X and Y colu Columns from Morph	umns using buttons.	×
NDrug CLogX Cn	t X T LogX	*
©l:(n-r) Cle Clogit Cprobit	Remove P	4
C N C N Scatterplot, One Regression Mea Lines And		
N Logistic Contir Regression Ta	igency ble 0K Cance	ns el Help
Continuous Nor	ninal	

Analyze テーブルメニューから、
 Fit Y by X を選択する。

2) X 軸に 変数 LogX を、Y 軸に 変 数 p を選択する。

3) OK ボタンをクリックし、実行 する。

🚸 JMP – [Morp	ohine: Y by	× N			_ □	X
🛃 <u>F</u> ile <u>E</u> dit	Tables	<u>R</u> ows	<u>C</u> ols	<u>A</u> nal	lyze	
<u>G</u> raph Too <u>l</u> s	<u>₩</u> indow	<u>H</u> elp			_ 6	Ľ×
p By LogX						-
1.0						_
0.9-						
0.8-						
0.7-				<u>,</u>		
0.6-	16			·		
<u>a 8.5</u>	1.5					-
0.4						
0.3-						
0.2	-					
0.1-			0.563	11		
0.0+	-	-	0.303	1		
.00	.25	.50 LogX		/5	1.00	
ateur a						
▶ Fitting ▶	I — Lin	ear Fit				
⊻\$1≥▲						

4) Fitting ボタンを押し、Fit Line を選択する。
5) Tools テーブルメニューから + を選択する。
6) Y 軸が p=0.5 となるように、クリックしながら、回帰直線上を移動しポイント探索する。
7) 50%有効量は、 antilog(0.56311)mg/kg = 3.65 mg/kg となる。

2.3 ロジットとは何か

n 匹中 r 匹の「あり・なし」反応 p=r/n は、シグモイド曲線になることが多い。 有効率 p のままでは、非線型の問題になり解析しづらい。また、有効率 p では、 サンプルサイズが考慮されていない。そこで、有効率 p についてロジット(logit) 変換を行い、直線回帰が行えるようにする。ロジット変換を表示してみよう。

A		
Column Info:		X
Table Name: Mo	orphine	
Col Name: 10	ogit	V Lock
Validation: 🧭	None CList Check CRange	Sheck
Data Type: No	umeric 💽 Data Source:	Formula
Modeling Type:	Continuous 💌	
Field Width: 🛐	Format: Fixed Decimal 💌 🕄	3
Notes:		
	$\left(\frac{p}{(1-p)}\right)$ or d	Cancel Help

1) JMP テーブル変数 logit を選択する。

2) Cols テーブルメニューから Column Info を選択する。

 左隅にロジット logit = ln(p/(1-p))が 表示されていることを確認すること。なお、 この計算式は、変数 logit に前もって計算式 を与えてあるが、ここでは計算式の作成手 順は省略する。

注) 古典的には、逆正規分布を用いたプロビットが使われていたが、計算のしやすさか らロジットが広く使われている。

2.4 シグモイド曲線の直線化

Semi1_生物検定法リバイバル.doc 最終印刷日時: 9/6/2005 2:43 PM 2.5 Fit Y by X によるロジスティック回帰分析での逆推定

2.5.1 反応あり・なしの表

反応ありを 0、反応なしを 1 にした形式の JMP データファイルを作成する。 Morphine01.jmp データファイルを開いてもよい。

♣ JMP <u>File Edit T</u>	ables <u>R</u> ows (<u>)</u> ols <u>A</u> n	alyze	 <u>G</u> raph	Π×
Too <u>l</u> s <u>W</u> indov	v <u>H</u> elp				
🕺 Morphine01				_ [⊐×
4 Cols		0 🗆		0 🗆	-
6 Rows	Drug	LogX	У	freq	
+ 1	1:Morphine	0.18	0	19	
+ 2	1:Morphine	0.18	1	84	
+ 3	1:Morphine	0.48	0	- 53	
+ 4	1:Morphine	0.48	1	67	
+ 5	1:Morphine	0.78	0	83	
+ 6	1:Morphine	0.78	1	40	
0 \ 0 Selected					+ +

投与量 LogX=0.18 で反応があったマウス は19 匹なので、y=0 に対して freq=19 とする。 反応がないラットは y=1 に対して freq=103 - 19 = 84 とする。

2.5.2 ロジスティック回帰分析

1.1 節では、有効率 p に対して単回帰分析を行ったのであるが、変数 y と変数 freq を用いてロジスティック回帰分析を行う。

🛠 Fit Y by X	×	1) Analyze テーブルメニューより,
Select X and Y columns using Columns from MorphineO1	buttons.	Fit Y by X を選択する。
NDrug CLogX Ny Cfree	ţ x ţ LogX Remove ţ y ţ y ţ y ţ	2) X 軸に 変数 LogX を、Y 軸に 変 数 y を、Freq に 変数 freq を選択 する。
C Scatterplot, One Way, One Way, Regression Means, Lines Anova	# Freq freq # Label #	3) OK ボタンのすぐ上に
N Logistic Contingency	Logistic Regression	Logistic Regression
Continuous Nominal	OK Cancel Help	が自動選択されている。これは、
		」 変数 y が名義データと定義されて
		いるために自動的に表示されてい
		る。

JMP File Edit Ta	bles Bows	Cols	Analyze	Graph	Tools	_ □ × Window
Help		<u> </u>		<u> </u>		<u></u>
🗚 Morphine01: `	Ү Бу Х					
y By LogX						
				Т		
				+		
0.75-		+		1		
	+					
∽ ^{0.5−}		/		-		
0.05	/			+		
0.25		+		0		
	+					
.00	.20 .	40	.60 .	80		
	Lo	ιgΧ				
Þ						
Converged by	/ Gradient					
(Whole-Model 1	[est]					
Parameter Esti	imates)					
Term	Estimat COGE105	te S Minim	td Error	ChiSquar 40 C	re Pro	b>ChiSq
LogX	3.6418235	н 0.23 18 0.51	184989	40.0	13	<.0001
						<u> </u>
▲						▶ //,

4) 結果が、左の図の表示されている。

5) Parameter Estimates をクリックし、回帰 係数を表示する。

6) 切片 -2.0651、傾き 3.6418 が得られて いる。

7) 図のY軸は、有効率であり、ロジスティック曲線が表示されている。

8) 右の図は、回帰係数の理解を深めるために計算した変数 logit で回帰直線を引いたものである。

LogX がゼロのときに切片が -2.0651 となり、LogX の増分1に対して 3.6418 logit が増えていることを、読み取っても らいたい。

注) この図は、正しいロジスティック回帰の 結果ではないことに注意されたい。ロジステ ィック回帰係数を用いた方法については、 2.5.4 節を参照のこと。

2.5.3 50%有効量と、その 95%信頼区間の計算

13) Tools テーブルメニューから + を選択する。

14) Y 軸が p=0.5 となるように、回帰
 直線上のポイントをクリックしなが
 ら移動する。、

15) 計算された有効量 antilog(0.567) にぴったりの数字は、表示はされてい ないが、近い数字となっている。

3. 計量値に対する逆推定

SAS の計量値に対する回帰分析は、PROC REG、PROC GLM、PROC MIXED、PROC NLIN など多彩であるが、生物検定法が要求する逆推定に対応できるプロシジャは存在 しない。どうしても求めたい場合は、それぞれの回帰直線の推定値と95%信頼区間を、 それが存在する範囲の投与量 X を細分化して SAS データセットを追加し、予測値の出 力機能、OUTPUT オプションなどを使用すれば可能である。その結果は膨大になるの で、その出力ファイルから必要なものだけ拾い出してくるといった SAS プログラム 2 に示すようなアルゴリズムを用いた方法により対応できる。

他方、JMP では、計量値の解析についても逆推定が標準的な機能としてサポートされ ている。その機能を紹介しよう。事例として、Hubert ら (1988) のラットに対する降圧 薬の研究を取り上げる。

アンジオテンシンIをラットの大腿静脈に注入すると、血圧上昇が起きる。降圧薬は、 これを阻害し血圧を下げる。したがって、血圧上昇が少ないほど降圧効果があると判断 する。

表 5. フ	アンジオテンシ	インI注入後の血圧上昇 (mmHg)					Hg)				
Drug	Dose (mg/kg)	デー	タ								
S	10	48	49	52	53	34	50	58	48	46	56
	30	50	37	36	39	34	36	41	40	30	40
	100	26	20	25	26	27	24	28	25	22	23
	300	20	14	12	16	15	11	18	16	14	13
Т	1	44	48	48	56	47	56				
	3	35	39	42	52	41	44				
	10	23	32	33	48	33	28				
	30	10	19	19	27	21	16				
	100	6	5	20	17	15	9				

表5. アンジオテンシン I 注入後の血圧上昇

解析の目的は、標準的な薬物 S に対する試験薬物 T の相対力価と、その 95%信頼区間を求めることである。JMP で解析するためには、データがすべて行方向に展開していなければならない。表 5 のような形式データのままでは対処できない。この形式のデータを、行方向に展開する機能が"Tables"メニューの"Satck Columns..."コマンドである。これは、列方向に展開している 1 行分のデータを、1 カラムの行方向に展開する(この逆は"Split Columns..."コマンドである)。

データを概観するためには、図5に示すように"Fit Y by X"の機能を使うと良い。 この図から、降圧剤を増やすと血圧の上昇が小さくなり、S および T がほぼ平行である ことがわかる。ほぼ平行であることを統計的にみるのは、投与量と薬剤間の交互作用が 無いことを示せば良い。生物検定法では、前節の2値データでも示したが、この交互作 用のことを Lack of Parallelism、非平行性、または平行性の欠如と言っている。JMP で は、"Fit Model"によって解析できる。この結果を出力3に示す。

非平行性の P 値は 0.0624 ときわどい値となっている。Lack of Fit から自由度が 5、F 値が 0.6848、P 値が 0.6367 であることから、直線の当てはまりは問題ないことがわかる。 これらのことと、LogX の P 値が極めて小さいことを総合して、交互作用は量的であり、 S と T に平行線を当てはめて逆推定を行うことは問題ないと判断する。

Bivariate Y By LogX

図 5. S 薬と T 薬の降圧効果

\triangle :	Linear Fit Drug=S	Y = 72.957 - 23.673 LogX
\times :	Linear Fit Drug=T	$Y = 50.734 - 19.816 \ Log X$

出力 3.	JMPによ	る非平行性の	つ検討と	Lack of Fit	の解析
-------	-------	--------	------	-------------	-----

		Response:	Y		
		Summary of F	it		
	RSquare		0.8738	3	
	RSquare Adj		0. 868064	1	
	Root Mean S	quare Error	5. 288258	}	
	Mean of Res	ponse	31.5	5	
	Observation	s (or Sum Wgts)	70)	
		Lack of Fit	t		
Source	DF	Sum of Squar	es Mean S	Square	F Ratio
Lack of Fit	5	98.10	12 19	9. 6202	0. 6848
Pure Error	61	1747.63	33 23	8. 6497	Prob>F
Total Error	66	1845. 73	45		0. 6367
		Parameter Estin	nates		
Term		Estimate	Std Error	t Ratio	Prob> t
Intercept		61.845744	1.608317	38.45	<. 0001
Drug[S-T]		11. 111241	1.608317	6.91	<. 0001
LogX		-21. 74444	1.017583	-21.37	<. 0001
Drug[S-T]*Lo	gX	-1.928588	1.017583	-1.90	0.0624

JMP で生成されるデザイン行列は、

S : 1

T : -1

のような対比なっているので、逆推定には、この値を用いる。

出力 4. JMP による降圧効果が 40、30、および 20 mmHg の場合の逆推定

	K	esponse: Y		
	Paran	neter Estimates		
Term	Estimate	Std Error	t Ratio	Prob> t
Interce	pt 60.861602	1, 55135	39, 23	<. 0001
Drug[S-	T] 8, 407206	0.756594	11.11	< 0001
LogX	-21. 55163	1. 031884	-20. 89	<. 0001
C				
	Inverse Predicti	on /* S 薬のi	逆推定 * /	
Y	Predicted LogX	Lower Limit	Upper Limit	1-Alpha
40.000000	1.35807889	1.26720455	1.44193909	0.9500
30. 000000	1.82208101	1.74315611	1.90254559	
20. 000000	2.28608312	2. 19586683	2.38639295	
	X Values			
	1	1	?	
			/	
	Inverse Predict	ion /* 薬のj	E推定 */	
Y	Predicted LogX	Lower Limit	Upper Limit	1-Alpha
40. 000000	0. 57788662	0. 47423915	0. 67392117	0.9500
30. 000000	1.04188873	0.95067469	1. 13404370	
20. 000000	1. 50589085	1. 40647751	1.61479896	
	V. V. Luce			
	x values	4	0	
	1	-1	?	

結果を表 6 に整理する。30mmHg の効果を得るために S 薬は、10^{1.822} = 66.4 mg/kg を必要とし、T 薬では 10^{1.041} = 11.0 mg/kg と少量であることが示されている。

表 6. S 薬と T 薬の逆推定、差の逆推定

降圧効果	S 薬	T 薬	差の逆推定(S – T)
Y	dose (95% cl)	dose (95% cl)	dose (95% cl)
40 mmHg	1.358 (1.267, 1.441)	0.577 (0.474, 0.673)	0.781 (0.659, 0.902)
30	1.822 (1.743, 1.902)	1.041 (0.950, 1.134)	0.781 (0.659, 0.902)
20	2.286 (2.195, 2.386)	1.505 (1.406, 1.614)	0.781 (0.659, 0.902)

差の 95% 信頼区間は、計量値の場合 JMP では、切片を除くモデルを指定しても、1 が強制的に含められ、計算不能であり、PROC MIXED により計算した。

出力 5. PROC MIXED による S 薬の 30mmHg、S 薬と T 薬の差の逆推定と 95% 信頼区間

LOGX D	1 D2	Y	_PRED_	_SEPRED_	_L95_	_U95_	PRED	L95	U95
0. 65934	1 –1		2.6046	1.3049	-0.0000	5. 2091	2. 60478	0.00019	5. 20937
0. 78020	1 –1		-0. 0002	1. 3021	-2. 5992	2. 5989	0.00005	-2. 59903	2. 59913
0. 90165	1 –1		-2. 6176	1. 3114	-5. 2351	-0.0001	-2.61740	-5. 23489	0.00009

L95 と L95 の符号が変化したときの L0GX が 95%信頼区間の下限 0.65934 となる。 同様に、差の推定値 Y の符号が変化したときの 0.78020 は X 軸に平行な差の推定値となる

4. 効力比の推定

4.1 4種の鎮痛薬の効果

JMP データファイル Finney.jmp を開く。

JMP データファイルは、フォルダ c: ¥ JMP ¥ HandsOn99 ¥ Bioassay にある。

🚯 JM	Р																		- 0	×
<u>F</u> ile	<u>E</u> dit	<u>T</u> ables	<u>R</u> ows	<u>C</u> ols	<u>A</u> n	alyze	<u>G</u> ra	aph	Too	ļs	<u>W</u> ind	ow	<u>H</u> elp	>						
🖈 Fir	nney																	-	. 🗆	×
		8 Cols	N			С		С		С		С		С		С		С		
14 R	ows		D	rug		Log	X		<u>۱</u>	0	r	1:(n	-r)	р		log	șit	prol	oit	
+		1	Morphi	ne		0).18		103		19		84	0.1	184	-1.	486	4.	102	
+		2	Morphi	ne		0).48		120		53		67	0.4	442	-0.	234	4.6	353	
+		3	Morphi	ne		0).78		123		83		40	0.0	675	0.	730	5.	453	
•		4	Amidor	ne		0).18		60		14		46	0.3	233	-1.	190	4.3	272	
•	5		Amidor	ne		0).48		110		54		56	0.4	491	-0.	036	4.9	977	
•		6	Amidor	ne		0).78		100		81		19	0.0	310	1.	450	5.0	378	
		7	Phena	doxone		-0).12		90		31		59	0.3	344	-0.	644	4.1	500	
		8	Phena	doxone		0).18		80		54		26	0.0	675	0.	731	5.4	454	
		9	Phena	doxone		0).48		90		80		10	0.0	389	2.	079	6.3	221	
×		10	Pethidi	ne		0).70		60		13		47	0.3	217	-1.	285	4.3	216	
×		11	Pethidi	ne		0	.88		85		27		58	0.3	318	-0.	765	4.5	526	
×		12	Pethidi	ne		1	.00		60		32		28	0.(533	0.	134	5.0	084	
x		13	Pethidi	ne		1	.18		90		55		35	0.0	511	0.	452	5.3	282	
x		14	Pethidi	ne		1	.30		60		44		16	0.7	733	1.	012	5.0	623	
																				-
0\0S	electe	d	•																Þ	

4.2 ロジットを用いた回帰直線

5) 再度 Fitting ボタン、Fit Line を選択する。

6)Toolsテーブルメニューから + を選択 し、Y 軸が p=0.5 となるように回帰直線 上のポイント探索してみよう。

7) 4 種の鎮痛薬ごとに回帰直線の傾き は、統計的に平行といえるのであろうか。

4.3 反応あり・なしの表

🚯 JM	Р				_ □	х
<u>F</u> ile	<u>E</u> dit <u>T</u> a	ables <u>R</u> ows <u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	5
<u>₩</u> indo	w <u>H</u> elp					
🖈 Fir	nney01				_ []]	×
	4 Cols					
28 R	ows	Drug	LogX		freq	
+	1	1:Morphine	0.18	0	19	·
+	2	1:Morphine	0.18	1	84	- I
+	3	1:Morphine	0.48	0	53	1
+	4	1:Morphine	0.48	1	67	- I
+	5	1:Morphine	0.78	0	83	- I
+	6	1:Morphine	0.78	1	40	
	7	2:Amidone	0.18	0	14	
	8	2:Amidone	0.18	1	46	
	9	2:Amidone	0.48	0	54	
	10	2:Amidone	0.48	1	56	
	11	2:Amidone	0.78	0	81	
	12	2:Amidone	0.78	1	19	
	13	3:Phenadoxone	-0.12	0	31	
	14	3:Phenadoxone	-0.12	1	59	
	15	3:Phenadoxone	0.18	0	54	
	16	3:Phenadoxone	0.18	1	26	
	17	3:Phenadoxone	0.48	0	80	
	18	3:Phenadoxone	0.48	1	10	
×	19	4:Pethidine	0.70	0	13	
×	20	4:Pethidine	0.70	1	47	
×	21	4:Pethidine	0.88	0	27	
×	22	4:Pethidine	0.88	1	- 58	
×	23	4:Pethidine	1.00	0	32	
×	24	4:Pethidine	1.00	1	28	
×	25	4:Pethidine	1.18	0	- 55	
×	26	4:Pethidine	1.18	1	35	
×	27	4:Pethidine	1.30	0	44	
×	28	4:Pethidine	1.30	1	16	
						\mathbf{T}
0 \ 0 S	elected	•			Þ	

反応ありを0、反応なしを1にした形式の表を作成する。

Finney データファイルからテーブルメ ニューの Stack Columns を用いて、列方 向の変数"0"、"1"のデータを行方向 に並べ変えることにより作成できる。 各自チャレンジしてみてよう。

ここでは、Finney01.jmpを開く。

Semi1_生物検定法リバイバル.doc 最終印刷日時: 9/6/2005 2:43 PM

4.4 平行性の検討

モルヒネを基準とした他の鎮痛薬の効力比を求めるためには、それぞれの鎮 痛薬のロジスティック回帰直線が統計的に平行であることが必要である。

4.4.1 Fit Model の使用

これまでは、Fit Y by X によりロジスティック回帰分析を行ってきたのであるが、これは、基本的に単回帰分析のための手法である。

Fit Model は、重回帰分析、分散分析、共分散分析、ロジスティック回帰分析 など多彩なモデル・ベースの統計手法を含んでいる。

ここでは、層別因子を含むロジスティック回帰分析を行う。

4種の鎮痛薬の用量反応がロジット変換後に統計的に平行であるとき、標準薬 モルヒネに対する他の鎮痛薬の効力比が求められる。

💠 JMP	
<u>F</u> ile <u>E</u> dit <u>T</u> ables	<u>R</u> ows <u>C</u> ols <u>A</u> nalyze <u>G</u> raph Too <u>l</u> s <u>W</u> indow
<u>H</u> elp	
💠 Finney01: Model	x
NDrug CLogX Ny Cfreq	<u>х</u> <u>х</u> <u>х</u>
	> Weight > > Freq > Effects In Model
- XAd X	
> Cross >	LogX — Drug*LogX
> Nest >	
Effect Macros:	
Degree: 2	Remove Effect Attributes:
□ No Intercept	Get Model Nominal Logistic 🗸 🗸
Defer Plots	Save Model Help Close Run Model

1) Analyze テーブルメニューの Fit Model を選択する。

2) Y 軸に 変数 y を選択する。

3) Freq に 変数 freq を選択する。

4) Effects In Model に、独立変数 として Drug、LogX、Drug * LogX を選択する。

5) 右隅の解析手法の表示が、自 動選択され Nominal Logistic と なっている。

6) 独立変数の作成手順

(1) Drugを選択、Addをクリックする。

(2) LogX を選択、Add をクリックする。

(3) 再度 Drug を選択、Add をクリックする。

(4) 再度 LogX を選択、Cross をクリックする。交互作用 Drug * LogX ができる。

7) Run Model をクリックする。

4.4.2 当てはまりの欠如、平行性の欠如

★ JMP File Edit Tables Rows Cols Analyze Graph Tools Window Help	1) Wole-Model Test をクリックして結果 を展開する。
★ Finney01: Model Fit Response: y (teration History) Converged by Gradient (Whole-Model Test) Model Difference 123.71094 Full 7247.4219 Full 728.7076 Beduced 852.28870	2) モデルの当てはまりは、Reduced と Full の対数尤度の差の 2 倍、247.4219 が自由度 7 のカイ 2 乗分布に従うこと から検定している。
RSquare (U) 0.1452 Observations (or Sum Wgts) 1231	結果は、P<0.0001 なのでモデルの当 てはまりは良好である。
Lack of Fit Source DF -LogLikelihood ChiSquare Lack of Fit 6 1.26803 2.536059 Pure Error 1217 727.30973 Prob>ChiSq Total Error 1223 728.57776 0.8644	3) Lack of Fit をクリックして結果を展 開する。
Parameter Estimates Effect Test Source Nparm Drug 3 3 Toug 3 76.35725 LogX 1 1 Drug*LogX 3 3 1 184.43560 0.0000 Drug*LogX 3 3 1 164.43560 0.0000	 4) Lack of Fit が有意でなければ、直線の 当てはめが妥当と判断される。 結果は、自由度が 6、カイ2 乗が 2.536、

p値が 0.8644 と有意でないので、4本の 直線の当てはめは妥当である。

5) 平行線の当てはめの妥当性は、Effect Test の交互作用 Drug * LogX が、有意で ないことで判断する。

P=0.6344 と大きいので異なる傾きを持つ直線の当てはめの妥当性は支持されない。

4.4.3 分散分析的なまとめ

	Effec	t Test	& Lack of Fit		
Source	Nparm	DF	Wald ChiSquare	Prob>ChiSq	
Drug	3	3	76.35725	0.0000	
LogX	1	1	184.43560	0.0000	
Drug*LogX	3	3	1.71151	0.6344	平行性の欠如
Lack of Fit		6	2.5360	0.8644	当てはまりの欠如
Pure Error		1217	727.30973		

Observations 1231

これは、JMP の結果をジャーナルに落とし、MS-Word に取り込み、整理した ものである。

自由度の確認をしよう。

全サンプルは1231、

測定ポイントは14、

1231 - 14 = 1217³ Pure Error,

モデルの自由度は、3+1+3=7、

総平均の自由度1を加えて、

14 - (7+1) = 6³ Lack of Fit

の自由度になっている。

4.5 平行線の当てはめ

4種の鎮痛剤に傾きが同じで切片が異なる4本の用量反応直線、すなわち平行な直線引いてみよう。

そして、それぞれの鎮痛薬の50%有効量を逆推定してみよう。

4.5.1 Fit Model

🚸 JMP	
<u>F</u> ile <u>E</u> dit <u>T</u> ables	<u>R</u> ows <u>C</u> ols <u>A</u> nalyze <u>G</u> raph Too <u>l</u> s <u>W</u> indow
<u>H</u> elp	
🍄 Finney01: Model	
NDrug CLogX Ny Cfreg	<u>м</u> > Y >
	> Weight > > Freq > freq
1	
> Add >	LogX Drug*LogX
> Nest >	
Macros:	<u>_</u>
Degree: 2	Remove Effect Attributes:
No Intercept	Get Model Nominal Logistic 🗸 🗸
Defer Plots	Save Model Help Close Run Model V
<u> </u>	

Window テーブルメニューから Finney01:Model を選択する。

2) 交互作用 Drug * LogX を選択 し、Remove ボタンをクリックす る。

 Effects In Model に Drug と LogX が残っていることを確認 し、Run Model をクリックする。

4.5.2 4本の回帰直線

1) Parameter Estimates をクリックし、結果を展開する。

2) 左隅の \$ ボタンをクリックし、Save Prob Formulas を選択する。

🍫 JN	1P								_ [🗆	×
<u>F</u> ile	<u>E</u> dit	<u>T</u> ables	<u>R</u> ows	<u>C</u> ols	<u>A</u> nalyze	<u>G</u> raph	Too <u>l</u> s	<u>W</u> indow	<u>H</u> elp	_
≠ F	inney0	1: Model	Fit							I ^
Para	ameter l	Estimates)							
Tern	n				Estimate	Std	Error	ChiSquare	Prob≻ChiSq	
Inte	rcept			-2.	1102248	0.1741	975	146.75	<.0001	
Dru	q[1:M	orph-4:F	'ethi]	-0.	1750301	0.1065	663	2.70	0.1005	
Dru	al2:Ar	mido-4:F	Pethil	0.2	1701614	0.1150312		3.56	0.0592	
Dru	al3:Pl	hena-4:F	Pethi	2.0	5846488	0.1754	643	138.97	<.0001	
Log	LogX				6147553	0.2972	2634	186.67	<.0001	J—
Effe	ct Test)								
Sou	rce	Nparm	DF	Wald C	hiSquare	Prob≻Ch	niSq			
Dru	g	3	3	16	6.71804	0.00	000			
Log	х	1	1	18	6.67445	0.00	000			
Ø) Sav	ve Prob F	ormulas						Þ	• 💌
										· //

J	MP							_ [] ×
<u>F</u> ile	<u>E</u> dit <u>I</u> a	ables <u>R</u> ows <u>C</u> ols	Analyze	Graph	lools	s <u>W</u> indow	<u>H</u> elp		
×	Finney01							_ □	х
	12 Cols		0			C	0	0	
28	Rows	Drug	LogX	у	freq	Lin(0)	Prob[1]	Prob[0]	
+	1	1:Morphine	0.18	0	19	-1.55419	0.825518	0.174482	
+	2	1:Morphine	0.18	1	84	-1.55419	0.825518	0.174482	
+	3	1:Morphine	0.48	0	53	-0.33575	0.583157	0.416843	
+	4	1:Morphine	0.48	1	67	-0.33575	0.583157	0.416843	
+	5	1:Morphine	0.78	0	83	0.882696	0.292619	0.707381	
+	6	1:Morphine	0.78	1	40	0.882696	0.292619	0.707381	
	7	2:Amidone	0.18	0	14	-1.16214	0.761722	0.238278	
	8	2:Amidone	0.18	1	46	-1.16214	0.761722	0.238278	
	9	2:Amidone	0.48	0	54	0.0563	0.485929	0.514071	
	10	2:Amidone	0.48	1	56	0.0563	0.485929	0.514071	
	11	2:Amidone	0.78	0	81	1.274742	0.218447	0.781553	
	12	2:Amidone	0.78	1	19	1.274742	0.218447	0.781553	
	13	3:Phenadoxone	-0.12	0	31	-0.52914	0.629282	0.370718	
	14	3:Phenadoxone	-0.12	1	59	-0.52914	0.629282	0.370718	
	15	3:Phenadoxone	0.18	0	54	0.689306	0.334188	0.665812	
	16	3:Phenadoxone	0.18	1	26	0.689306	0.334188	0.665812	
	17	3:Phenadoxone	0.48	0	80	1.907748	0.129234	0.870766	
	18	3:Phenadoxone	0.48	1	10	1.907748	0.129234	0.870766	
×	19	4:Pethidine	0.70	0	13	-1.37764	0.798612	0.201388	
×	20	4:Pethidine	0.70	1	47	-1.37764	0.798612	0.201388	
×	21	4:Pethidine	0.88	0	27	-0.64658	0.656239	0.343761	
×	22	4:Pethidine	0.88	1	- 58	-0.64658	0.656239	0.343761	
×	23	4:Pethidine	1.00	0	32	-0.1592	0.539716	0.460284	
×	24	4:Pethidine	1.00	1	28	-0.1592	0.539716	0.460284	
×	25	4:Pethidine	1.18	0	55	0.571865	0.360807	0.639193	
×	26	4:Pethidine	1.18	1	35	0.571865	0.360807	0.639193	
×	27	4:Pethidine	1.30	0	44	1.059242	0.257454	0.742546	
×	28	4:Pethidine	1.30	1	16	1.059242	0.257454	0.742546	
									-
1\1	Selected	4)	· [

3) Windows テーブルメニュ ーから Finney01 を選択する と、

- 変数 Lin[0]、 変数 Prob[1]、
- 変数 Prob[0]

が、JMP テーブルに付加さ れている。

4) Lin[0] に、4本の平行な 反応直線上の予測値が推定 されている。

5) Fit Y by X を用いて確認してみ る。

 A 軸に、変数 LogX を、Y 軸に 変数 Lin[0]を選択し、OK ボタン をクリックする。

 プロット図があらわれたなら ば、左隅の Fitting ボタンをクリッ クし、Grouping Variable をオンにし、 変数 Drug を選択する。

8) 再度、左隅の Fitting ボタンを クリックし、Fit Line を選択する。

9) Tool テーブルメニューから、+ ツールを選択する。

10) Y 軸が0となるようなモルヒ ネの線上をクリックしながらに 探索する。

11) LogX が 0.55704 と推定されて いる。他の鎮痛剤についても推定 してみよう。

4.5.3 回帰係数

4本の回帰直線の回帰係数を、求めてみよう。

5) モルヒネの切片は、

- 2.1102 - 0.1750 = - 2.2852

であり、傾きは - 4.0615 であることがわかる。アミドネ、ペナドキシオネも同様に計算できる。各自、計算し、図から得られる結果と対比してみよ。

6) ペチジンの場合は、他の鎮痛剤と異なり、切片は、

- 2.1102 - (-0.1750 + 0.2170 + 2.0689) = -4.2211 となる。JMP が対比型のダミー変数を自動生成していることによるが、ここで は、その内容には触れない。

4.5.4 50%有効量の推定

🚯 JMP _ 🗆 × <u>File E</u>dit <u>T</u>ables <u>R</u>ows <u>C</u>ols <u>A</u>nalyze Graph ✓ をクリックする。 Too<u>l</u>s <u>W</u>indow <u>H</u>elp 🗚 Finney01: Model Fit (Effect Test Likelihood Ratio Tests ld ChiSquare Si Prob≻ChiSq D Confidence Intervals 166.71804 0.0000 推定の画面を出す。 Odds Ratios 186.67445 0.0000 Inverse Prediction 1 🚯 JMP - 🗆 × <u>File E</u>dit <u>T</u>ables <u>R</u>ows <u>C</u>ols <u>A</u>nalyze <u>G</u>raph Too<u>l</u>s Window <u>H</u>elp 🗚 Finney01: Model Fit [Inverse Prediction] Parameter Probability 1-Alpha から、 Drug[1:Morph-4:Pethi] 0.9500 0.5 Drug[2:Amido-4:Pethi] ? Ο Drug[1:Morph-4:Pethi] = 1Drug[3:Phena-4:Pethi] 0 ? ? LogX 2 ? Drug[3:Phena-4:Pethi] = 0? 2 Log X = ?? Click/Enter X values. Clear one X to predict. を入力する。 Click/Enter values for Probability Done || Help ✓ \$ × 1 **۲** • //

🚯 JMP					
<u>F</u> ile <u>E</u> dit]	[ables <u>R</u> ows	<u>C</u> ols <u>A</u> nalyz	e <u>G</u> raph T	īoo <u>l</u> s <u>W</u> in∢	dow
<u>H</u> elp					
		100.07 443	0.0000	<u></u>	_
Inverse Predi	ction)				
Probabil	ity Predicted L	ogX Lowe	r Limit U	Jpper Limit	1-Alpha
0.5000000	0.562666	172 0.50462	8839 0.62	2252337	0.9500
X Values					
1	1	0	0	?	
I <u>L</u>					
<u> </u>					

1) Model Fit ウィンドウの左隅にある

2) Inverse Prediction をクリックし、逆

3) モルヒネの 50% 有効量を求め るためには、名義尺度データで ある鎮痛薬で生成されているダ ミー変数が、対比型であること

Drug[2:Amido-4:Pethi] = 0

4) Probability は、縦に ? が並ん でいる、先頭に、0.5 を入力する。 隣の列の行とは関連がない。

5) Done をクリックする。

6) 逆推定の結果、50%有効量と して antilog(0.5627) が得られ、 その 95% 信頼区間は (0.5046、 0.6223) である。

7) アミドネは [0,1,0]、ペナド キシオネは [0.0.1]、ペチジン は [-1,-1,-1] で逆推定できる。

File Edit Tables Rows Cols Analyze Graph Tools Window Help File Edit Tables Rows Cols Analyze Graph Tools Window Help Torresv01: Model Fit Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 0.466138147 0.399221549 0.531062390 0.9500 X Values 1 0 1 0 ? Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 0.010281961 0.06328981 0.079513521 0.9500 X Values 1 0 0 1 ? Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 1.09551263 0.9500 X Values 1 -1 -1 -1 ? Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 1.09551263 0.9500 X Values 1 -1 -1 -1 ? Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 1.09551263 0.9500 X Values 1 -1 -1 -1 ? Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 1.09551263 0.9500 Intervent Intervent Intervent Intervent Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 1.09551263 0.9500 Intervent Inverse Prediction Inverse Inverse Inverse Inverse Inverse I					
Eile Edit Tables Rows Qols Analyze Graph Tools Window Help 7) アミドネの 50%有効 ★ FinneyOl: Model Fit Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 0.466138147 0.399221549 0.531062390 0.9500 X Values 1 0 1 0 ? Inverse Prediction 8) ペナドキシオネの Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 0.010281961 .0.06328981 0.079513521 0.9500 X Values 1 0 1 ? Inverse Prediction antilog(0.0103) Y Values 1 0 1 ? Inverse Prediction	🚯 JMP				
★ Finney01: Model Fit Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.530000000 0.466138147 0.399221549 0.531062390 0.9500 X Values 1 0 1 0 ? Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 0.010281961 0.06328981 0.079513521 0.9500 X Values 1 0 0 1 ? Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 1.09551263 0.9500 X Values 1 -1 -1 -1 ? Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 0.9551263 0.9500 X Values 1 -1 -1 -1 ? Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 0.9551263 0.9500 X Values 1 -1 -1 -1 ?	<u>F</u> ile <u>E</u> dit <u>T</u> ables <u>R</u> i	ows <u>C</u> ols <u>A</u> nalyze <u>G</u> i	raph Too <u>l</u> s <u>W</u> ir	ndow <u>H</u> elp	7) アミドネの 50%有効
Inverse PredictionLower LimitUpper Limit1-Alpha0.500000000.4661381470.3992215490.5310623900.9500X Values1010?Inverse PredictionProbabilityPredicted LnXLower LimitUpper Limit1-Alpha0.500000000.0102819610.063289810.0795135210.95008) $\sim + \lor \Rightarrow \Rightarrow \Rightarrow \infty$ 1001?Nerse Prediction0.063289810.0795135210.950050%6)X Values101?Inverse PredictionComer LimitUpper Limit1-Alpha0.500000001.039197640.9834348171.095512630.9500X Values1-1-1?1-1-1?-1?	🗚 Finney01: Model Fit				量は
Probability 0.50000000 X ValuesPredicted LnX 0.399221549Lower Limit 0.5310623901-Alpha 0.9500antilog(0.4661)1010?Inverse Prediction Probability X ValuesLower Limit 0.06328981Upper Limit 0.0795135211-Alpha 0.95008) $\sim t + t + 2 > T > \infty$ Inverse Predicted LnX 0.50000000Lower Limit 0.06328981Upper Limit 0.0795135211-Alpha 0.95008) $\sim t + t + 2 > T > \infty$ Inverse Prediction X Values 1001?Inverse Prediction X Values 1Lower Limit 0.9919764Upper Limit 0.9834348171-Alpha 0.95512630.9500 0.9500.1-1-1-1?1-1-1-1?1-1-1-1?1-1-1?	Inverse Predictio	n		-	里13 人
0.50000000 X Values0.466138147 0.3992215490.531062390 0.95000.9500 C ある。1010?Inverse Prediction	Probability Predic	ted LnX Lower Limit	Upper Limit	1-Alpha	antilog(0.4661)
X Values 1 0 1 0 ? Inverse Prediction	0.5000000 0.466	6138147 0.399221549	0.531062390	0.9500	である
1 0 1 0 ? Inverse Prediction Probability Predicted LnX 0.5000000 0.010281961 0.06328981 0.079513521 0.9500 X Values 1 0 0 1 ? Inverse Prediction Probability Predicted LnX 0.5000000 1.03919764 0.983434817 1.09551263 0.9500 X Values 1 -1 -1 -1 -1 ? 1 -1 -1 -1 -1 ? 1 -1 -1 -1 -1 ?	X Values				$\zeta \omega \omega_{\circ}$
Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.5000000 0.010281961 -0.06328981 0.079513521 0.9500 X Values 1 0 0 1 ? Inverse Prediction Inverse Prediction Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 1.09551263 0.9500 X Values 1 -1 -1 ? 1 -1 -1 ? 9) ペチジンの 50% 有効 量は、 4 -1 -1 ?	1	0 1	0?		
Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 0.010281961 -0.06328981 0.079513521 0.9500 X Values 1 0 0 1 ? Inverse Prediction	Inverse Predictio	n			のペードキシナマの
Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 0.010281961 -0.06328981 0.079513521 0.9500 X Values 1 0 0 1 ? Inverse Prediction	Duck al little Duck	··· ••••••••••••••••••••••••••••••••••	11	4.41.1.4	o) ~) ~ 7 ~ 7 ~ 7 ~ 7 ~ 7 ~ 7 ~ 7 ~ 7 ~
Substitution 0.305050000 0.30505000 0.30505000 0.30505000 X Values 1 0 0 1 ? Inverse Prediction	0 50000000 0 010	281961 0.06328981	0 079513521		50% 有効量は、
1 0 0 1 ? Inverse Prediction Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 1.09551263 0.9500 X Values 1 -1 -1 -1 ? 1 $\pm t$ 4 $\pm t$ 、 antilog(0.0103) である。 9) ペチジンの 50% 有効 量は、	X Values	-0.00520501	0.073313321	0.000	
Inverse Prediction である。 Probability Predicted LnX Lower Limit 1-Alpha 0.50000000 1.03919764 0.983434817 1.09551263 0.9500 X Values 1 -1 -1 ? 1 -1 -1 ? 」	1	0 0	1?		antilog(0.0103)
Inverse Prediction Probability Predicted LnX 0.50000000 1.03919764 0.903434817 1.09551263 0.900000 1.03919764 1 -1 -1 -1 <th></th> <th></th> <th></th> <th></th> <th>であろ</th>					であろ
Probability Predicted LnX Lower Limit Upper Limit 1-Alpha 0.50000000 1.03919764 0.983434817 1.09551263 0.9500 - 9) ペチジンの 50% 有効 1 -1 -1 ? 量は、	Inverse Predictio	n			
0.50000000 1.03919764 0.983434817 1.09551263 0.9500 X Values 1 -1 -1 -1 ? 9) ペチジンの 50% 有効 量は、	Probability Predic	rted LnX Lower Limit	Upper Limit	1-Alpha	
X Values <u>1 -1 -1 -1 ?</u> <u>4</u> 9) ヘナシンの 50% 有効 量は、	0.50000000 1.03	919764 0.983434817	1.09551263	0.9500	
	X Values				9) ヘナシンの 50% 有効
	1	-1 -1	-1 ?	-	量は
	•		1		王 157
antilog(1.0392)					antilog(1.0392)

である。

4.5.5 効力比の計算

モルヒネに対してアミドネの効力比 40 は、

と定義されているので、モルヒネを標準検体とした場合のアミドネの効力比は、 antilog(0.5627) / antilog(0.4661) = 1.22 倍 となる。

ペナドキシオネの効力は、antilog(0.5627) / antilog(0.0103) = 3.57 倍、ペチジン の効力は、antilog(0.5627) / antilog(1.0392) = 0.33 倍となる。

4.6 効力比の 95%信頼区間

2.5 節では、効力比の 95%信頼区間を示さなかった。これには、理由がある。 逆推定に際して、切片が 1 に固定され、差の推定で切片を 0 する必要があるの であるが、現在の JMP のバージョンでは変更できないためである。

この JMP の制約を回避するために、ダミー変数を自前で生成し、切片なしの ロジスティック回帰モデルを用いる。

4.6.1 ダミー変数の生成

	8 Cols		<u>п</u>	NN	េា	٥n	េា	ดก	00	Finney01dummy.jm
28 Rows		Drug	LogX		freq	 D1	D2	D3	D4	ノアイルを開く。
+	5	1:Morphine	0.78	0	83	1	0	0	0	
+	6	1:Morphine	0.78	1	40	1	0	0	0	ダミー亦粉け D1
	7	2:Amidone	0.18	0	14	0	1	0	0	クミー変数は、DI、
	8	2:Amidone	0.18	1	46	0	1	0	0	D2、D3、D4 のように ⁻
	9	2:Amidone	0.48	0	- 54	0	1	0	0	7
	10	2:Amidone	0.48	1	- 56	0	1	0	0	o °
	11	2:Amidone	0.78	0	81	0	1	0	0	
	12	2:Amidone	0.78	1	19	0	1	0	0	
	13	3:Phenadoxone	-0.12	0	- 31	0	0	1	0	
	14	3:Phenadoxone	-0.12	1	59	0	0	1	0	
	15	3:Phenadoxone	0.18	0	- 54	0	0	1	0	
	16	3:Phenadoxone	0.18	1	26	0	0	1	0	
	17	3:Phenadoxone	0.48	0	80	0	0	1	0	
	18	3:Phenadoxone	0.48	1	10	0	0	1	0	
×	19	4:Pethidine	0.70	0	13	0	0	0	1	
×	20	4:Pethidine	0.70	1	47	0	0	0	1	
×	21	4:Pethidine	0.88	0	27	0	0	0	1	
×	22	4:Pethidine	0.88	1	- 58	0	0	0	1	
×	23	4:Pethidine	1.00	0	32	0	0	0	1	
×	24	4:Pethidine	1.00	1	28	0	0	0	1	
×	25	4:Pethidine	1.18	0	- 55	0	0	0	1	
×	26	4:Pethidine	1.18	1	- 35	0	0	0	1	
×	27	4:Pethidine	1.30	0	44	0	0	0	1	
×	28	4:Pethidine	1.30	1	16	0	0	0	1	

4.6.2 切片なしのモデル

★ JMP Eile Edit Tables Rows Cols Analyze Graph Tools Window Help Finney01dummy: Model ★ Finney01dummy: Model Orag ○ LogX ○ UogX ○ U	 1) 独立変数に、D4、D1、D2、 D3、LogX を与える。この順 番が大切である。 2 番目以降に標準薬を置く こと。
> Add > D4 > Cross > D2 D2 D3 LogX LogX Begree: 2 Remove Effect Attributes: No Intercept Get Model Defer Plots Save Model Help Close LogX	2) No Intercept をオンにする。
✓ JMP _□ × Eile Edit Tables Bows Cols Analyze Graph Tools Window Help ✓ Finney01dummy: Model Fit _□ × ▲ (Lack off n) / / / ▲ Parameter Estimates Term Estimate Std Error ChiSquare Prob>ChiSq D4 -4.2206758 0.3258847 167.74 <.0001 01 -2.2852549 0.1970613 134.48 <.0001 D1 -2.2852549 0.1970613 134.48 <.0001 03 -0.0417599 0.1468854 0.08 0.7762 LogX 4.06147553 0.2972634 186.67 <.0001 Effect Test	3) D1 - D2 の対比を与える。 4) LogX は ? とする。 5) Probability は、0.5 とする。
Inverse Prediction Parameter X Probability 1-Alpha D1 1 0.5 0.9500 D2 -1 ? D3 0 ? LogX ? Click/Enter X values. Clea Click/Enter values for Pro Done Help ✓ File Edit Tables Rows Cols Analyze C Probability Predicted LogX Lower Lint 0.5000000 0.096528025 0.00953402 X Values 0 1 -1	araph Tools Window Help ■ nit Upper Limit 1-Alpha 5 0.187063211 0.9500 0 ? ↓

6) 標準約モルヒネと未知検体アモドネの効力比は、

ρ = antilog(0.56267 - 0.46614) = antilog(0.09653) = 1.25
となる。2.5 節の効力比 1.22 と異なるが、計算精度の問題がおきており、こちらが計算上は正確である。

7) 効力比の 95% 信頼区間の下限と上限は、

 $\rho_{95\mathrm{L}}\!=\!\mathrm{antilog}(\,0.00953\,)\!=\!1.02$

```
\rho_{95U} = \text{antilog}(0.18706) = 1.54
```

となる。

8) D1 - D3、ペナドキシオネの log (効力比)

4.6.3 第2の切片なしモデル

独立変数の順番を、D3、D1、D2、D4、LogXとする。

≱ JN	P	T 1 1	B	<u> </u>	0	<u> </u>	T 1	ω [,] 1	_ 🗆	x
_ile	Edit	Lables	<u>R</u> ows		<u>A</u> nalyze	<u>G</u> raph	Tools	<u>W</u> indow	Help	
🗇 F	inney0	1dummy:	Model						×	Ē
	rug ogX				> Y >	¥			<u> </u>	
D f	req					J			<u> </u>	İ
	1 2				> Weight	>				
	3				> Freq >	fre	èq		_	
	-			⊥ Ef	fects In	Model				
	> Add	\rightarrow	D3						۸	
	> Cros	s >	D2							
	> Nes	t >	LogX							-
Eff	ect								-1	
Mac	ros:				1 54	ffaat 0+			_	
Deg	ree:	2	Ke	move		neot At				
№ N	o Inte	rcept	Get	Model		inal Lo _t	gistic		-	
ΠÞ	efer F	lots	Save	Model	Help	Clo	se	Run Mode	el -	-
1									•	Г

Inverse prediction で、D1 - D4 の効力の差を推定している。 ペチジンの log (効力比)と、その 95% 信頼区間を次に示す。

🚱 JMP 📃 🗖 🗶	1
<u>F</u> ile <u>E</u> dit <u>T</u> ables <u>R</u> ows <u>C</u> ols <u>A</u> nalyze <u>G</u> raph Too <u>l</u> s	
<u>W</u> indow <u>H</u> elp	
🕺 Finney01dummy: Model Fit	
(Parameter Estimates)	1
Term Estimate Std Error ChiSquare Prob>ChiSq	
D1 -2.2852549 0.1970613 134.48 <.0001	
D2 -1.8932087 0.2033065 86.72 <.0001	
D4 -4.2206758 0.3258847 167.74 <.0001	
LogX 4.0614/553 0.29/2634 186.67 <.0001	
(Effect Test)	
(Inverse Prediction)	
Parameter X Probability 1-Alpha	
D1 1 0.5 0.9500	
?	
?	
2	
Click/Enter X values. Clear one X to predict.	
Click/Enter values for Probability	
(Done)(Help) 🐼 JMP	_ 🗆 🗵
File Edit Tables Rows Cols Analyze Graph	n Too <u>l</u> s <u>W</u> indow <u>H</u> elp
Einney01dummy: Model Fit	
(Inverse Prediction)	
Probability Predicted LogX Lower Limit	Upper Limit 1-Alpha
X Values	0.33432334 0.3300
0 1 0 -1	?

5. 複数の誤差を伴う生物検定法

医薬安全性研究会 77 回定例会 (1999) で取り上げられた in-vitro 薬効薬理試験におけ る実験計画並びに統計解析の事例「ヒト白血球の LPS 刺激における D 薬のサイトカイ ン産生抑制作用」が複数の誤差を伴う生物検定法の例である。表7にデータを示す。課 題の提示者は、「グラフから、D 薬について濃度依存的なヒトの白血球からのサイトカ イン産生抑制作用が認められた。しかし、LPS 対照群と D 薬の各濃度群間との Dunnett 型あるいは Williams 型検定では、いずれの群間にも、統計的有意差が認められなかった」 と結論し、「本試験における適切な統計解析法はなにか、本実験において、計画段階で の不備があったとすれば、本来、どう計画するのが適切であったか。」との質問をして いる。

実験は、第1日目にA氏の分離した白血球を、1つのプレート上(例えば96ウェル) で、LPS を無添加 (-) の 3 つのウェル (くぼみ)、LPS 添加 (+) を 15 ウェルに、その 内 12 ウェルに D 薬の 4 用量をそれぞれ 3 つのウェルに添加し、全体で 18 個のウェル の中で産生されたサイトカインを一括測定した。第2日目に B氏、第3日目に C氏の 白血球について実験が行われた。

衣	/	リー	r	ルイン産生物	<u>ل</u> رط
		G		DOSE	SBJ

主 7 みくしわくい 卒止 师判

(pg/mL)

					× •	
G	DOSE	SBJ	LPS	Y1	Y2	Y3
1	0	А	-	27.3	24.4	22.5
	0	В	-	66.4	80.6	46.2
	0	С	-	14.4	18.3	19.9
2	0	А	+	1410.0	1260.4	1325.3
	0	В	+	8908.6	7361.1	6735.0
	0	С	+	282.8	282.2	233.4
3	0.1	А	+	1076.9	1132.6	960.0
	0.1	В	+	6617.3	5866.2	5919.6
	0.1	С	+	80.5	65.9	64.8
4	0.3	А	+	680.9	903.7	966.1
	0.3	В	+	3316.1	2451.0	3700.7
	0.3	С	+	22.4	14.4	18.8
5	1	А	+	821.5	637.5	653.9
	1	В	+	1838.9	1274.3	1227.5
	1	С	+	9.6	5.8	8.6
6	3	А	+	170.5	132.1	212.7
	3	В	+	890.3	709.7	1201.1
	3	С	+	11.0	7.2	4.9

この薬理試験において検証したいこと何であろうか。その目的に合致した統計解析は どのよなものであろうか。幾つかの統計解析の考え方、それに対する問題点を示そう。

表7の結果だけを見ただけでは、6群×3人×3測定=54個のデータが完全ランダムであるのか、あるいは、ランダム化が制約された分割実験となっているの判断できない。実験手順から、Aさん、Bさん、およびCさん別にデータを並べ替えてみるとよい。その中で、ランダム化がされていることに注意が向くであろう。言い換えると、6群×3測定=18個のデータの中でランダム化が行われている。その18個のデータ間には、個体ごとの本質的な血液学的な反応差のみならず、様々な実験操作に伴う誤差が複合して入り、それらは、この実験データからは、特定できないのである。

次に、1 群当たり3 個のデータについて考えてみよう。各ウェルに注入する順番、測 定の順番など幾つかのランダム化が制約されているかもしれない。ただし、A さん、B さん、2人のデータでは、異なる用量間で同程度の大きさのデータが存在しているので、 それらのランダム化の制約が無視できると判断される。言い換えると、18 個のデータ は、完全にランダム化されていると見なして差し支えない。

以下に5つの解析事例を示す。同じ実験データであっても、まったく異なる結果が得られる。正解とは言わないまでも、解析事例4による用量反応の解析と解析事例5に示した第2群(LPS添加)を基準としたサイトカインの産生抑制が発現する用量の推定が、この実験の解析方法として妥当と考える。

解析事例1. 54 個のデータが完全ランダム化されたとした1元配置分散分析

方法: 6 群間で Tukey の多重比較を行う。

model $\log(Y) = \text{Group};$

問題点:個体間と個体内の誤差で検定しているので有意差が出難い

比較の基準群が不明瞭、生物学的な判定基準がない

群間の分散が明らかに異なるので1元配置分散分析の適用は不適当 結果:群1に対して群2のみが有意

個体ごとの用量反応関係は、統計解析を行わずとも明らかにある。

図 6. 各個人ごとの散布図および Tukey の多重比較

解析 2. 各個体別に求めた 3 個のデータの平均値に対する用量反応性の検討 方法:LPS 添加 5 群に対して回帰分析

model log(Y)_mean = Dose ;

問題点:各個体の対応関係を無視していることになり、15人分のデータと見な したと同じである。

結果:用量反応が有意でない(P=0.1138)

Bivariate Mean(LogY) By Mean(LnX)

図7. 個体の平均値の散布図

Linear Fit Mean(LogY) = 2.2883542 - 0.2512466 Mean(LnX)

この回帰直線は、それぞれ独立な測定結果とみなした場合に相当する。回帰直 線の95%信頼区間が共に水平となっているので、回帰が有意でないことがわか る。

解析 3. 混合モデルを前提に LPS 無添加群を基準とした群間の比較

- 方法:個体と群を固定効果、個体と群の交互作用を変量効果とした混合モデル 同一個体内の3回の測定は、繰返し測定誤差と見なす
 - 群1(LPS 無添加群)に対して各群との比較を Dunnett 行う

model log(Y) = Subject Group ;
random Subject * Group

- 問題点 実験の目的は、LPS 添加に拮抗する D 薬の量を、統計的に差が無くなる用量をもって同定しようとする解析方法となる。3 例程度では、検出力が低く、統計的に差が無いことの強調は困難である
- 結果 群 1 に対して群 5 (D 薬 1.0 nM 群) より Dunnett 法で有意差が出なく なる

出力 6. PROC MIXED によるダネットの多重比較

			Differences of	Least	Square	s Means		
GROUP	GROUP	Difference	Std Error	DF	t	Pr > t	Adjustment	Adj P
2:+:0.0	1:-:0.0	1.6665246	0. 3161088	10	5.27	0. 0004	Dunnett-Hsu	0. 0015
3:+:0.1	1:-:0.0	1. 4086180	0. 3161088	10	4.46	0.0012	Dunnett-Hsu	0.0049
4:+:0.3	1:-:0.0	1.0829562	0. 3161088	10	3.43	0.0065	Dunnett-Hsu	0. 0247
5:+:1.0	1:-:0.0	0.8205668	0. 3161088	10	2.60	0. 0267	Dunnett-Hsu	0. 0943
6:+:3.0	1:-:0.0	0. 5401066	0. 3161088	10	1.71	0. 1183	Dunnett-Hsu	0. 3557

解析4. 個体ごとの用量反応の検討

方法:個体ごとに回帰直線を同時に当てはめ用量反応関係を検討

model $log(Y) = Subject \ Subject*LnDOSE / noint ;$

問題点:そもそも実験の目的は何か。この範囲の用量で直線的な用量反応があ るか調べることなのか。あるいは、各個体間の反応の平行性を調べた いのか、はっきりしない。

結果 それぞれの被験者の用量反応、直線の傾きは、-0.174、 -0.219、および -0.379 とすべて有意である。図8にサイトカイン量の常用対数を取った散布図に個人ごとにあてはめた回帰直線と、その95%信頼区間を表示した。

出力7. PROC MIXED による回帰係数の推定と95%信頼区間

Solution for Fixed Effects													
Effect	SBJ	Estimate	Std Error	DF	t	Pr > t	Alpha	Lower	Upper				
SBJ	Α	2.626000	0.051631	39	50.86	0.0001	0.05	2. 5216	2. 7304				
SBJ	В	3. 199796	0.051631	39	61.97	0.0001	0.05	3. 0954	3. 3042				
SBJ	C	1.039265	0.051631	39	20. 13	0.0001	0.05	0. 9348	1.1437				
LNDOSE*SBJ	Α	-0. 174419	0. 026126	39	-6. 68	0. 0001	0. 05	-0. 2273	-0. 1216				
LNDOSE*SBJ	В	-0. 219583	0. 026126	39	-8.40	0.0001	0.05	-0. 2724	-0. 1667				
LNDOSE*SBJ	С	-0. 359737	0. 026126	39	-13. 77	0.0001	0.05	-0. 4126	-0. 3069				

一般的に、個体差の大きい実験では、同一個体内で処理間の比較を行うのが鉄則である。この実験では、3人の被験者の白血球を使用しており、比較すべき全ての処理が一 被験者の中で行われている。このように観点から、用量反応関係を含む結果の生物学的 な解釈は、個人間の誤差を考慮すべき課題と、個人内の誤差で判定すべき課題をはっき りと区別して論じなければならない。

この問題は、実験計画法でいうところの分割実験になっている。結果の一般化可能性 という観点からは、被験者を固定効果と見なすか変量効果と見なすかの問題となる。固 定効果と見なす場合は、この実験の3人での実験の再現性を考えることに対応し、変量 効果とすることは、他の被験者の場合にも当てはめられる結論を言いたいときに必要で ある。

Bivariate LogY By LnX

図 8. 個体ごとの回帰直線とその 95%信頼区間 ■: Linear Fit SBJ = A LogY = 2.6260004 - 0.1744194 LnX +: Linear Fit SBJ = B LogY = 3.1997964 - 0.2195832 LnX ×: Linear Fit SBJ = C LogY = 1.0392657 - 0.3597373 LnX

解析 5. 第2群(LPS 添加)を基準として、サイトカインの産生抑制が発現する用量 方法:用量群を固定効果、被験者を変量効果、被験者と用量群の交互作用を変 量効果とした線形混合モデルによる解析をおこなう

model $\log Y = \text{Group}$;

random Subject Subject*Group;

- 問題点 統計的な有意差検定のみで判定するのは例数が少ないので、抑制する 用量を大き目に判定しがちになる。平均値、および、その95%信頼区 間をみながら、過少評価・過大評価をしないようにする必要がある。
- 結果 第4群 (D薬 0.3 nM) より LSD 法により有意差 (P=0.0209) が出る。
 ただし、被験者間の変動が大きいために、固定用量でのサイトカイン
 産生抑制の平均値の 95%信頼区間は、最高用量の 3.0 nM 群の場合、
 10^{-0.3735}~10^{4.4067}

と非常に広いことに注意を要する。

出力 8. PROC MIXED による個体を変量効果としたモデル

Covariance Parameter Estimates (REML)

Cov Parm	Estimate		
SBJ	1.03155794	/* 個体間の誤差分散 *	*/
GROUP*SBJ	0.05945078	/* 群間の差の検定のための誤差分散 *	*/
Residual	0.00781063	/* 個体内の誤差分散 *	*/

Tests of Fixed Effects

Source	NDF	DDF	Type III F	$\Pr > F$
GROUP	4	8	9.77	0.0036

Least Squares Means

Effect	GROUP	LSMEAN	Std Error	DF	t	Pr > t	Alpha	Lower	Upper
GROUP	2:+:0.0	3.1430298	0.6037693	2.19	5. 21	0. 0287	0.05	0. 7529	5. 5331
GROUP	3:+:0.1	2.8851232	0.6037693	2.19	4. 78	0. 0342	0.05	0. 4950	5. 2752
GROUP	4:+:0.3	2. 5594614	0.6037693	2.19	4. 24	0. 0436	0.05	0. 1694	4.9496
GROUP	5:+:1.0	2.2970720	0.6037693	2.19	3.80	0. 0541	0.05	-0. 0930	4. 6872
GROUP	6:+:3.0	2.0166118	0.6037693	2.19	3. 34	0.0697	0.05	-0. 3735	4. 4067

Differences of Least Squares Means

GROUP	_GROUP	Difference	Std Error	DF	t	Pr > t	Alpha	Lower	Upper	
3:+:0.1	2:+:0.0	-0. 2579065	0. 2033950	8	-1.27	0. 2405	0.05	-0. 7269	0. 2111	
4:+:0.3	2:+:0.0	-0. 5835684	0. 2033950	8	-2.87	0. 0209	0.05	-1.0526	-0. 1145	
5:+:1.0	2:+:0.0	-0. 8459578	0. 2033950	8	-4.16	0.0032	0.05	-1.3150	-0.3769	
6:+:3.0	2:+:0.0	-1. 1264180	0. 2033950	8	-5.54	0.0005	0.05	-1. 5954	-0. 6574	

Tests of Fixed Effects: NDF は分子の自由度、DDF は分母の自由度、これから群間の検定 は、GROUP*SBJ で行われていることがわかる。

Least Squares Means: 群の SE は、3 種の誤差分散を合成その自由度 2.19 は、Satterthwaite の自由度の調整法を用いている。このために 95%信頼区間は、非常に広くなっている。 ここに示されている t 検定は、群の平均値に対するもので、全く意味がない。

Differences of Least Squares Means: 第2群との差であり、この場合の Std Error は、2つの誤差分散 GROUP*SBJ と Residual の分散を合成したものである。

6. JMP による混合モデルの解析

前節に示した混合モデルは、バージョン3のJMPには含まれていない。現在開発中のバージョン4から利用できそうである。以下に、前節の解析事例5の出力に β4版の 出力とを対比する。

🚱 JMP - [Anz77 ono T: N	Model Dialog
<u>F</u> ile <u>E</u> dit <u>T</u> ables	DOE <u>A</u> nalyze <u>G</u> raph Tools <u>U</u> ser <u>V</u> iew <u>W</u> indow <u>H</u> elpX
▋▋▋Ġ₽₿₫	እ 🖻 🖻 🖉 📗 🗟 ? 🗞 🛛 🌩 🥙 🖢 ዖ ዖ + 📗 🛞 A
👻 🕶 Model Specificati	ion 🔄 📥
-Select Columns-	Pick Role Variables
©G ®SBJ ©DOSE	Y LogY optional Remove
	Weight optional numeric
©LnX	Freq optional numeric
C Y C Log Y	By optional
NR	Construct Model Effects
	Add SBJ &Random
	Cross GROUP SB #GROUP & Pandom
	Nest Nest
	Macros 📼
	Degree 2
	Attributes *
	□ No Intercept
Storage	Fitting Personality Action
Save Model	Standard Least Squares 📼 Run Model
	Emphasis: Effect Leverage
	Method: REML (Recommended)
Ready	NUM

図 9. JMP による固定効果とランダム効果の指定

ML,および REML による解析が、新しいバージョンで追加された。

� JMP = [Fit Model] ★ Eile Edit Tables DOE A	<u>malyze G</u> rap	h Tool	s <u>U</u> ser <u>V</u> iev	v <u>W</u> indow	<u>H</u> elp					_ [미 × _ [리 ×	۲ ۲
		? १	n 🖶 🔶) # 9 9	+	nz77_ono_T		•			
▼ Response LogY											
▼ Whole Model)
Actual by Predicted Plot	:										
Summary of Fit											
Analysis of Variance											
Parameter Estimates											
➡ REML Variance Compor	nent Estimat	es									
Random Effect	Var Ra	atio 1	Var Com	ponent	Std Error	95% Lo	wer	95%	Upper	Pct of Total	
SBJ&Random	132.0	5831		1.0314641	1.0772339	0.26	93116	:	54.297063	93.878	
SBJ*GROUP&Random	7.611	4974		0.0594509	0.0349201	0.02	43973	I	0.2994827	5.411	
Residual Totol				0.0078107						0.711	
-2 LogLikelibood = -25	79/91			1.0907297						100.000	
 ✓ Effect Tests 	70401								1		
Source	Nparm	DF	DFDen	Sum of	Squares	F Ratio	Prob) > F			
SBJ&Random	3	2	8		1.2984000	83.1170		<.0001	Shrunk		
GROUP	4	4	8		0.3050961	9.7654	I	0.0036			
SBJ*GROUP&Random	15	8	30		1.4269985	22.8373		<.0001	Shrunk		
Tests on Random effects	refer to shru	nken pr	edictors rathe	r							
Residual by Predicted P	lot I										
1										Þ	
Markers											//.

図 10. JMP による混合モデルの分散成分、および分散分析表

VAR Component は、**PROC MIXED** の分散成分、1.03155, 0.05945, 0.00781 に一 致している。分散分析表の **GROUP** の F 値 9.7654 も一致している

図 11. 群の LSMEAN、LSD 法による差の推定と信頼区間

Least Sq Mean と Std Error は、PROC MIXED の LSMEAN と Std Error に 一致している。差の Std Err Dif は一致しているが、信頼区間は一致しな い。JMP は小さ目になっている。これは、誤差の自由度を、個体内の誤 差分散の自由度 30 を用いているからである。自由度が大きい場合には、 大きな問題とならないが、この例のような少数例の場合に問題である。 PROC MIXED の初期のリリースも同じ問題があったので、解決される ことを期待したい。

文献

Finney, J. D. (1971), Probit analysis 3rd ed., Cambridge, London.

Hubert, J. J., Bihidar, M. R., Peace, K.E. (1988), Assessment of Pharmacological Activity. in Biopharmaceutical Statistics for Drug Development (83-148), Dekker.

中上節夫、森川敏彦監訳(1992) 医薬統計学、サイエンティスト社.

小野秀樹、山田俊介(1999)、In vitro 薬効薬理試験における実験計画並びに統計解析、医薬安全 性研究会 77 回定例会資料 (1999).