応用ロジスティック回帰 計量値のシグモイド用量反応

第13回 高橋セミナー

高橋 行雄

ファイル名:V:¥STAT_PRC¥anz2002seminar¥ANZ2002_bioassay¥anz_seminal_13¥コビ- ~ Semi_13_応用ロジスティック回帰_続き 3.doc 最終 保存 日:4/4/2003 6:36 PM 最終印刷日時: 2005 年 10 月 31 日/19 時 20 分 — ii—

表紙裏

改訂の記録 2003年1月9日,新規作成

目	次
н	バ

i

1.	各種	重の統計ソフトによるあてはめ,追加1
	1.1.	Sigma Plot による計量値のシグモイド曲線のあてはめ1
	シリ	「マプロットのログおよびテキスト出力4
	1.2.	Sigma Plot による平行線検定6
	1.3.	S pulsでの実行結果7
	Sプ	ラスのログとテキスト出力8
	1.4.	BMDS (Benchmark Dose Software)9
	BM	DS のテキスト出力見本10
2.	Ra	dioligand Assayにおけるシグモイド曲線13
	2.1.	実例
	2.2.	再解析14
_		
3.	发到	数変換によるパフメータの推定(ロジット変換を追加)17
	口?	^ジ ット変換17
4	非約	
т.	シレル	息形同場の計質方式(幾つかの追加) 10
	4 1	泉形回帰の計算方式(幾つかの追加)
	4.1.	泉形回帰の計算方式(幾つかの追加)
	4.1. JMI	泉形回帰の計算方式(幾つかの追加)
	4.1. JMI JMI	象形回帰の計算方式(幾つかの追加)
	4.1. JMI JMI SAS	 泉形回帰の計算方式(幾つかの追加)
	4.1. JMI JMI SAS 4.2.	泉形回帰の計算方式(幾つかの追加) 19 ガウス・ニュートン法による逐次計算,ドレーパー・スミスの事例 19 のスクリプト言語での結果 19 の非線形モデルでの結果 20 S/NLINでの結果 20 ニュートン・ラフソン法(Newton-Raphson Method)追加 22 デーラー近似(approximation by Taylor expension) 追加 22 23
	4.1. JMI JMI SAS 4.2. 4.3.	象形回帰の計算方式(幾つかの追加) 19 ガウス・ニュートン法による逐次計算,ドレーパー・スミスの事例 19 のスクリプト言語での結果 19 の非線形モデルでの結果 20 S/NLINでの結果 20 ニュートン・ラフソン法(Newton-Raphson Method)追加 22 デーラー近似(approximation by Taylor expansion)追加 23 ニュートン・ラフソン法の例題 追加 24
	 4.1. JMI JMI SAS 4.2. 4.3. 4.4. 4.5 	象形回帰の計算方式(幾つかの追加)19ガウス・ニュートン法による逐次計算,ドレーパー・スミスの事例19のスクリプト言語での結果19の非線形モデルでの結果20S/NLINでの結果20ニュートン・ラフソン法(Newton-Raphson Method)追加22テーラー近似(approximation by Taylor expansion)追加23ニュートン・ラフソン法の例題,追加24ニュートン・ラフソン法の例題(ドレーパー・スミスの例で)追加25
	 4.1. JMI JMI SAS 4.2. 4.3. 4.4. 4.5. 	泉形回帰の計算方式(幾つかの追加) 19 ガウス・ニュートン法による逐次計算,ドレーパー・スミスの事例 19 のスクリプト言語での結果 19 のの非線形モデルでの結果 20 S/NLINでの結果 20 ニュートン・ラフソン法(Newton-Raphson Method)追加 22 デーラー近似(approximation by Taylor expansion)追加 23 ニュートン・ラフソン法の例題,追加 24 ニュートン・ラフソン法の例題(ドレーパー・スミスの例で)追加、 25
5.	4.1. JMI SAS 4.2. 4.3. 4.4. 4.5.	象形回帰の計算方式(幾つかの追加)19ガウス・ニュートン法による逐次計算,ドレーパー・スミスの事例19のスクリプト言語での結果19のの非線形モデルでの結果20SNLINでの結果20ニュートン・ラフソン法(Newton-Raphson Method)追加22テーラー近似(approximation by Taylor expansion)追加23ニュートン・ラフソン法の例題,追加24ニュートン・ラフソン法の例題(ドレーパー・スミスの例で)追加、25ち比26

5.2.	単回帰分析の問題を非線形回帰で解く方法(復習)	. 28
5.3.	平行線検定の効力比の直接推定	. 30
5.4.	Emaxが共通な計量値のシグモイド曲線の効力比	. 32
ヒン	スタミン誘発収縮反応による事例	33
実懸	矣手順	33
最ナ	た収縮高を用いた Emaxの基準化	35
蒸昏	留水を基準にしたEC50の差の推定と95%信頼区間	37
5.5.	陰性対照、および、陽性対象がある場合	. 38
JMI	Pによる計算例	40

表 1.1 ヒスタミンによる平滑筋の収縮	
表 1.2 シグマプロットでの推定結果	4
表 1.3 Sプラス上のスプレッドシート	7
表 1.4 Sプラスでの各点の予測値と 95% 信頼区間	9
表 2.1 化合物Bに阻害されたモルモットの脳組織での化合物Aの結合	率14
表 2.2 陽性および陰性対照, ダミー変数	14
表 2.3 JMPによる推定値	
表 3.1 経験ロジット変換	
表 5.1 アンジオテンシンI注入後の血圧上昇 (mmHg)	
表 5.2 S薬とT薬の逆推定、差の逆推定	
表 5.3 直線状の用量反応	
表 5.4 非線形回帰として解いた結果 ($\beta_2 = x_{y=0}$)	
表 5.5 非線形回帰の結果 ($\hat{m{\beta}}_{2(y=5)}=x_{y=5}$)	
表 5.6 非線形回帰モデルによる 30mmHgでの逆推定	
表 5.7 非線形回帰モデルによる効力比の推定	
表 5.8 実験デザイン(ラテン方格、G薬の濃度)	
表 5.9 モルモット摘出回腸のヒスタミン誘発収縮反応に及ぼすG薬の	乍用 34
表 5.10 最大収縮高を 100% とする反応率	
表 5.11 G薬の濃度別のln(EC50)の推定値	
表 5.12 JMPによるEC50 の差の推定	
表 5.13 効力比	
表 5.14 2種類のダミー変数を持つ解析データ	
表 5.15 非線型回帰のパラメータの推定値	
表 5.16 収縮高を考慮した効力比と飽和点の位置topの推定	
表 5.17 収縮高を考慮した効力比	
表 5.18 収縮高を考慮した飽和点の位置 <i>top</i>	
図 1.1 シグマプロットで作成された曲線	
図 1.2 降圧薬SとTのラットでの降圧効果	6
図 1.3 Sプラスでの作図例	7
図 1.4 Sプラスで, Emaxモデル式とパラメータの初期値を指定	

図表目次

义	1.5	BMDSデータ入力画面	. 9
义	1.6	BMDS のモデル選択画面	10
义	1.7	BMDSの出力画面例	12
义	2.1	JMPでの計算式1	15
义	2.2	JMPによるラジオリガンド・アッセイのシグモイド曲線	15
义	3.1	ヒスタミンによる平滑筋の収縮	17
义	3.2	経験ロジット変換後の回帰直線のあてはめ	17
义	5.1	直線的な用量反応	27
义	5.2	回帰直線と95%信頼幅2	29
义	5.3	生データのプロット	34
义	5.4	共通のシグモイド曲線のJMPでの非線回帰式	36
义	5.5	傾きが 1.37 と共通のシグモイド曲線	37
义	5.6	インディケータ型ダミー変数を持つJMPの非線形回帰式	42
义	5.7	効力比を出すためのJMPの非線型回帰式	43
义	5.8	収縮高を考慮したシグモイド曲線	45

第12回目の高橋セミナーで、モルモットから摘出した平滑筋を用いた薬物 - 受容体 モデルの実験データから *EC50*の推定を Emax モデルなどの非線形回帰の問題を解くた めに WinNonlin, GraphPad Prism での結果を示した。これに引き続き SigamPlot, S、お よび BMDS (Benchmark Dose Software) についての結果を示す.

ヒスタミン	平滑筋
薬物濃度 (μM)	収縮量 (mm)
0.0100	1
0.0316	3
0.100	5
0.316	23
1.00	66
3.16	113
10.00	158
31.60	171
100.00	171
316.00	165

表 1.1 ヒスタミンによる平滑筋の収縮

1.1. Sigma Plot による計量値のシグモイド曲線のあてはめ

∑ Sig	maPlot	- Hista	imin_E	Emax.JNB*					
<u>F</u> ile	<u>E</u> dit	<u>I</u> nsert	<u>⊻</u> iev	v F <u>o</u> rmat <u>T</u> o	ols <u>G</u> raph <u>S</u> t	atistics Tr	ansfor <u>m</u> s	Toolbo <u>x P</u> harmacolog	y <u>W</u> indow <u>H</u> elp
l D i	差	6	X		~ 🗈 👿 i	li 🗖 🏢		A 50% - J	O Nº 23 🕅
			- 00 -	 		Nale			
<u> </u>					2 ~ 12	11 00 E			
	150)ata 1	,			📎 Histar	min_Emax.JNB	
• • • • •	220	∃∥		1-x	2-y	3	∎ =-Q2 N	otebook	0000
A.]	1	0.0100	1.0000		B	Section 1	
1 ²⁰		/	2	0.0316	3.0000				Summary
N	1 A		3	0.1000	5.0000				Delete
- K		Ž	4	0.3160	23.0000				
		1	5	1.0000	66.0000				Help
£		2	5	3.1600	113.0000				- Summaru Info
		1		21,6000	158.0000				Author:
Y		/	0	100,0000	171.0000				PDN Client
A			10	316,0000	165 0000				Created:
<u> </u>			11	510,0000	105.0000				2003/02/04 ŒBŒã
			12						10:57:24
			13						Modified:
			14						2003/02/04 Œ6Œã 11:06:57
			15						11.00.07
₫₿ _₫			16						
1.1							,		
For He	lp, pres	s F1						NUM	

Sigma Plot 画面 1 データ入力画面

Sigma Plot 画面 2 プロット図上で Fit Curve の実行

Sigma Plot 画面 3 シグモイド曲線の選択

Regression Wizard		×
Select the equation to fit your data $y = \frac{dx^{b}}{c^{b} + x^{b}}$	Equation Category Sigmoidal Equation Name Logistic, 4 Parameter Weibull, 4 Parameter Gompertz, 3 Parameter Gompertz, 4 Parameter	<u>S</u> ave Save <u>A</u> s Ne <u>w</u> Edit Code
Help Cancel	<u>B</u> ack <u>N</u> ext	Einish

Regression Wizard		×
Select your dependent variable	Variable Columns	<u>S</u> ave
$\bigcirc = \frac{dx^{b}}{c^{b} + x^{b}}$	Variables X : X V : Y Data From XY Pair	Save <u>A</u> s Options Edit Code
Help Cancel	<u>B</u> ack <u>N</u> ext	Einish

Sigma Plot 画面 4 変数 $y \ge x$ の選択

Sigma Plot 画面 5 推定結果

Regression Wia	zard				×
Converged, t	olerance satisfie	d.			More Iterations
Rsqr = 0.997	65408 Norm	n = 11.00463	35911		⊻iew Constraints
Parameter	Value	StdErr	CV(%)	Dependencies	
a	1.716e+2	2.682e+0	1.563e+0	0.4477838	
Ь	1.168e+0	8.211e-2	7.031e+0	0.2584680	
c	1.587e+0	1.132e-1	7.134e+0	0.3163910	
					v
	Help	Cance	<u>B</u> a	ck <u>N</u> ex	t <u>F</u> inish

 $E \max = a = 1.716e + 2 = 171.6$,

EC50 = c = 1.567 $\gamma = b = 1.168$

図 1.1 シグマプロットで作成された曲線

Х	у	Predicted	Residuals	Parameters
0.0100	1	0.4606	0.5394	171.5789
0.0316	3	1.7522	1.2478	1.1678
0.1000	5	6.5379	-1.5379	1.5873
0.3160	23	22.6184	0.3816	
1.0000	66	63.1898	2.8102	
3.1600	113	118.5343	-5.5343	
10.0000	158	153.6683	4.3317	
31.6000	171	166.5156	4.4844	
100.0000	171	170.2308	0.7692	
316.0000	165	171.2252	-6.2252	

表 1.2 シグマプロットでの推定結果

シグマプロットのログおよびテキスト出力

Nonlinear Regression

[Variables] x = col(1)y = co|(2)reciprocal_y = 1/abs(y)reciprocal_ysquare = $1/y^2$ [Parameters] a = max(y) 'Auto {{previous: 171.579}} b = 1 ''Auto {{previous: 1.16781}} c = x50(x, y) ''Auto {{previous: 1.58732}} [Equation] $f=a*x^b/(c^b+x^b)$ fit f to y ''fit f to y with weight reciprocal_y ''fit f to y with weight reciprocal_ysquare [Constraints] [Options] tolerance=0.000100 stepsize=100 iterations=100

R = 0.99882635	Rsqr = 0.99765408	Adj Rsqr = 0.99698382

Standard Error of Estimate = 4.1594

	Coefficient	Std. Error	t	Р	
а	171.5789	2. 6819	63.9764	<0. 0001	
b	1. 1678	0. 0821	14. 2233	<0.0001	
С	1.5873	0. 1132	14. 0170	<0.0001	

Analysis of Variance:

-	DF	SS	MS	F	Р
Regression	2	51501.2980	25750. 6490	1488. 4521	<0. 0001
Residual	7	121.1020	17.3003		
Total	9	51622, 4000	5735, 8222		

PRESS = 416.3449

Durbin-Watson Statistic = 2.0442

Normality Test:

K-S Statistic = 0.2415 Significance Level = 0.5426

181.5864

182.8053

Constant Variance Test: Passed (P = 0.0537)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

9

10

170.2308

171.2252

164. 5547

165.1123

Row	Predicted	Res i di	ual	Std.	Res.	Stud.	Res.	Stud.	Del.	Res.
1	0.4606	0. 5394	(). 1297		0. 1298		0.1203		
2	1.7522	1. 2478	(). 3000		0. 3026		0. 2820		
3	6.5379	-1.5379	-(). 3698		-0.3930		-0.3679		
4	22. 6184	0. 3816	(). 0918		0. 1215		0. 1126		
5	63.1898	2.8102	(). 6756		0. 9913		0. 9898		
6	118.5343	-5. 5343	-1	. 3306		-2. 1066		-3. 2236		
7	153.6683	4. 3317	1	. 0414		1. 2752		1. 3474		
8	166.5156	4. 4844	1	. 0782		1. 2432		1. 3038		
9	170.2308	0. 7692	(). 1849		0. 2265		0. 2104		
10	171.2252	-6. 2252	-1	. 4967		-1.9105		-2.5567		
Influence	Diagnostics:									
Row	Cook'sDist	t Levera	age	DFFIT	S					
1	0.0000	0.0020	(). 0054						
2	0.0005	0.0173	(). 0374						
3	0.0067	0. 1148	-(). 1325						
4	0.0037	0. 4292	(). 0976						
5	0.3775	0. 5354	1	. 0627						
6	2. 2286	0.6011	-3	3. 9567						
7	0.2706	0. 3330	(). 9521						
8	0.1698	0. 2479	(). 7485						
9	0.0085	0. 3331	(). 1487						
10	0.7658	0. 3863	-2	2. 0284						
95% Confi	dence:									
Row	Predicted	Regr.	5%	Regr.	95%	Pop.	5%	Pop.	95%	
1	0.4606	0.0177	(). 9035		-9.3847		10. 3059		
2	1.7522	0.4604	3	3. 0440		-8. 1676		11.6720		
3	6.5379	3. 2054	ę). 8705		-3.8466		16. 9225		
4	22. 6184	16. 1748	29). 0619		10.8602		34. 3765		
5	63.1898	55. 9929	70). 3867		51.0026		75. 3771		
6	118. 5343	110. 9092	126	i. 1594		106. 0894		130. 9792		
7	153.6683	147. 9927	159). 3440		142. 3129		165. 0238		
8	166.5156	161.6191	171	. 4121		155. 5288		177. 5024		

175.9068

177. 3380

158.8751

159.6450

1.2. Sigma Plot による平行線検定

シグマプロットで各種の非線形回帰が, 適切に行なわれることがわかった. それでは, バイオアッセイの基本の一つである平行線検定は, できるのか. 暫定的なコメント==>若干の経験からだけであるが, 道は険しそうである.

2D Graph 12

図 1.2 降圧薬 S と T の ラット での降圧効果

次なる課題,2 値データのロジスティック回帰はできるのだろうか、逆推定はどうだろうか、

S プラスは, **S** に **GUI** (グラフィカル ユーザ インターフェイス)の機能を付与した ものであり, **UNIX** 上の代表的な統計ソフトであり,近年は,ウィンドウズ上でも稼動 するようになっており,ここに示す例は,ウィンドウズ版の**S** プラスを使用している.

RowNames	Х	lnx	logx	У
1	0.01	-4.6052	-2.00	1
2	0.03	-3.4546	-1.50	3
3	0.10	-2.3026	-1.00	5
4	0.32	-1.1520	-0.50	23
5	1.00	0.0000	0.00	66
6	3.16	1.1506	0.50	113
7	10.00	2.3026	1.00	158
8	31.60	3.4532	1.50	171
9	100.00	4.6052	2.00	171
10	316.00	5.7557	2.50	165

表 1.3 S プラス上のスプレッドシート

図 1.3 S プラスでの作図例

Nonlinear Regressi	ion			
Model	Options	Results	Predict	
Data		Save N	Model Object	
<u>D</u> ata Set:	HistaminEmaxS	S <u>S</u> ave A	ls: ∫Hi	staminEmaxS
└ Model				
<u>F</u> ormula:	y "Emax / (1 +	+ exp(gamma*(log	g(EC50) - Inx)))	
Parameters (nam	ne=value):			
	Emax=170, EC	>50=1.5, gamma=	1.1	
OK Car	ncel Apply	K X current		Help

図 1.4 S プラスで, Emax モデル式とパラメータの初期値を指定

Sプラスのログとテキスト出力

 $y \sim Emax/(1 + exp(gamma * (log(EC50) - lnx)))$

Emax=170, EC50=1.5, gamma=1.1

163.749 : 170 1.5 1.1 121.17 : 171.433 1.5814 1.17015 121.103 : 171.588 1.58759 1.16728 121.102 : 171.579 1.58731 1.16784 *** Nonlinear Regression Model *** Formula: $y \sim Emax/(1 + exp(gamma * (log(EC50) - lnx)))$ Parameters: Value Std. Error t value Emax 171.57900 2.6813500 63.9896 1.58731 0.1131930 14.0230 EC50 1. 16784 0. 0821457 14. 2166 gamma Residual standard error: 4.15936 on 7 degrees of freedom Correlation of Parameter Estimates: Emax EC50 EC50 0.562 gamma -0.508 -0.286

RowNames	Х	lnx	logx	У	fit	residual	fit.se	LCL95	LCU95
1	0.0100	-4.61	-2.00	1.00	0.4606	0.5394	0.1870	0.0184	0.9028
2	0.0316	-3.45	-1.50	3.00	1.7521	1.2479	0.5458	0.4615	3.0426
3	0.1000	-2.30	-1.00	5.00	6.5376	-1.5376	1.4086	3.2068	9.8684
4	0.3160	-1.15	-0.50	23.00	22.6178	0.3822	2.7249	16.1744	29.0612
5	1.0000	0.00	0.00	66.00	63.1896	2.8104	3.0442	55.9913	70.3880
6	3.1600	1.15	0.50	113.00	118.5349	-5.5349	3.2251	110.9086	126.1612
7	10.0000	2.30	1.00	158.00	153.6688	4.3312	2.3999	147.9939	159.3436
8	31.6000	3.45	1.50	171.00	166.5155	4.4845	2.0708	161.6189	171.4122
9	100.0000	4.61	2.00	171.00	170.2305	0.7695	2.4003	164.5546	175.9063
10	316.0000	5.76	2.50	165.00	171.2248	-6.2248	2.5848	165.1128	177.3368

表 1.4 Sプラスでの各点の予測値と 95% 信頼区間

推定値を入れた散布図はどのようにしたら出せるのだろうか、S プラスの使用経験が 乏しいので、今後の検討課題。

1.4. BMDS (Benchmark Dose Software)

BMDS は、米国 EPA(Enviromental Protection Agency)が、開発中の各種の用量反応 に対応するソフトである. BMDS は、用量、反応の平均値、SD、n などを入力してシグ モイド曲線のあてはめを基本としている. 生データでも解析できるようであるが、うま く行かない. 更に調査を行う.

Crea Sele	ected File	itaset Screen <mark>e</mark> C:\DOCUMEN1	IS AND SET	TINGS\106151	\iffXINIgibiv\BMC	So	rt By:	 ▼
	x	y_mean	y_sd	n	COLUMN5	COLUMN6	COLUMN7	
1	1	11	2	3				
2	2	12	3	3				1
3	4	12.5	4	3				
4	8	13	3	3				
5	16	14	3	3				
6								
7							-	
8								
9								-
•								►
		Model Type	Continuou	IS 🔻	Model :	Hill	•	

図 1.5 BMDS データ入力画面

U.S. E.P.A. Benchmark Dose Software				
ile <u>E</u> dit <u>O</u> ptions <u>W</u> indow <u>H</u> elp				
H D 🛎 !				
🚾 Create/Edit Dataset Screen				_ []
<mark>; 🏤</mark> Continuous Type Model Run				
Model Name : Hill		A	dverse Dir.	BMR Type
Data Source File C:\DOCUMENTS A	ND SETTINGS\106	9	Automatic	C Rel. Dev.
Output Data File BMDS	Browse		Up Down	 Abs. Dev. Std. Dev.
User Notes : BMDS MODEL RUI	N			 Point Extra
Const	ant Variance (Rho=0)?	BMR: 0.1000		Smooth Option
	BMD Calculation ?	Retrict n >	1? 🗹 🧕	Unique
Confidence Level 0.950	BMDL Curve Calc. ?			CSplines
K Advanced Mode S Convergence Criteria	Parameters	Active Option	Va	lues 🔺
Iteration 250	Alpha	Default		
Relative Fune 1a 9	Rho	Default		
	Intercept	Default		
Parameter 1e-8	v	Default		-
Reset to Defaults	<u>C</u> ancel	<u>B</u> un	Create F	ile For Batch ? 厂

図 1.6 BMDS のモデル選択画面

BMDSのテキスト出力見本

Hill Model. \$Revision: 2.1 \$ \$Date: 2000/10/11 21:21:23 \$ Input Data File: C:¥DOCUMENTS AND SETTINGS¥106151¥デスクトップ¥BMDS¥BMDS.(d) Gnuplot Plotting File: C:¥DOCUMENTS AND SETTINGS¥106151¥デスクトップ¥BMDS¥BMDS.plt Fri Feb 28 09:11:26 2003

3

18

4

BMDS MODEL RUN

The form of the response function is: Y[dose] = intercept + v*dose^n/(k^n + dose^n) Dependent variable = MEAN Independent variable = x rho is set to O Power parameter restricted to be greater than 1 A constant variance model is fit Total number of dose groups = 5Total number of records with missing values = 0Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 8.58581 rho = 0 Specified intercept = 11

v =

n =

k =

0 1

A	Asymptotic Corre alpha	lation Matrix o	of Paramete	r Estimates v	n
alpha	1	0	0	0	0
rho	0	1	0	0	0
intercept	0	0	1	0	0
V	0 0	0	0	1	Õ
n	0	0	0	0	1
k	ů 0	Õ	Ő	0	0
K	v	v	Ũ	Ũ	Ŭ
Maria i	Pa	arameter Estima	ates	F	
varia	able Es		Sta.	Err.	
aı	pna	0.4000/		1	
	rno	0		1	
interd	cept	11.5		1	
	V	2.00001			
	n	18			
	K	4		I	
Table o	of Data and Estir	nated Values of	Interest	Eat Std Day	Chi^2 Boo
1 3	11	2	11 5	2 54	-0 197
2 3	12	-	11 5	2 54	0 197
4 3	12 5	4	12 5	2 54	-1 82e-006
8 3	13	3	13 5	2 54	-0 197
16 3	14	3	13.5	2.54	0 197
Model A1: V Model A2: V	Yij = Mu(i) /ar{e(ij)} = Sigr Yij = Mu(/ar{e(ij)} = Sigr	i) + e(ij) na^2 i) + e(ij) na(i)^2			
Model R:	Yi = Mu - Var{e(i)} = Sign	⊦e(i) na^2			
	Like	lihoods of Inte	erest		
	Model Log(likelihood) L)⊢ A		
	A1 -2	. 264334	6 54.	528669	
	A2 -20). 584847	0 61.	169694	
f	fitted -2	1. 499952	5 52.	999905	
	R –22	2. 892179	2 49.	784358	
Test 1: Do (A Test 2: Ar Test 3: Do	pes response and, A2 vs. R) re Variances Homo pes the Model for	Yor variances of ogeneous (A1 vs r the Mean Fit	differ amon s A2) (A1 vs. fi	g dose levels tted)	
	Tecto	of Interest			
Test -	-2*log(likelihoo	Ratio) Toot	df n-v	alue	
Test 1	1 A 11	166 Q		3292	
Test 2	1 259	R97 /	0	8513	
Test 2	0 //71	236 1	0	4924	
1031 0	0.4/12	I	0	772-7	

The p-value for Test 1 is greater than .05. There may not be a diffence between responses and/or variances among the dose levels Modelling the data with a dose/response curve may not be appropriate

The p-value for Test 2 is greater than .05. A homogeneous variance model appears to be appropriate here

Benchmark Dose Computation Specified effect = 0.1

Risk Type = Relative risk

Confidence level = 0.95

BMD = 4.06774

BMDL = 3.25396e-007

図 1.7 BMDS の出力画面例

2. Radioligand Assay におけるシグモイド曲線

Peace 編,中上,森川監訳(1992),医薬統計学の第2章,「薬物の創製:化合物の発 見から最適化合物の探索まで」は,医薬品のスクリーニング時における,シグモイド曲 線の問題を取り上げている.

第12回のセミナーで取り上げた第5章「変数変換によるパラメータの推定」で示した,スキャッチャード・プロットなどの方法によるパラメータの推定方式についての記述のみならず,非線形回帰によるラジオリガンド・アッセイのデータについて解析方法が示されている.

2.1. 実例

表 2.1 は、モルモットの脳での化合物Aの結合を、種々の濃度の別のアヘン類縁物で ある化合物Bの存在下で示している。化合物Bは、受容体に対し、化合物Aと競合し、そ のため、化合物Bの濃度が増加するとき、化合物Aの受容体を結合する量は減少する。 このデータを、重みつき非線型解析で、ラングミュアの恒温結合式に直接当てはめると きには、結果は、疑わしいものとなる。NONLIN84を用いた推定値は、次のようになる:

Bmax = $3221 \pm 4,172,000$ CPM

 $= 6.95 \pm 9002 \text{ pmol/g tissue}$

Kd =
$$2.177 \pm 6057 \text{ nM}$$

Ki =
$$175.9 \pm 261,600 \text{ nM}$$

C = 207.1 ± 15.36 CPM/nM

 $= 0.477 \pm 0.033$ ml/gtissue

これらのデータの観測値と当てはめられた期待値を(原著:図 17, JMPの結果は 図 2.2) に示している。これらの推定値の分散は、大き過ぎるだけでなく、飽和試験より 求めた値と完全に食い違っている。より正確な推定値は、RIAについてのセクションで 与えられた再パラメーター化から、求められる。

データをプロビット法で解析すると、IC50 とヒルの係数のみが得られる。先に述べたように、ヒルの係数は、プロビット・対数用量曲線の勾配によって、推定される。この一組のデータより、次の推定値が得られた:

ヒルの係数 = 0.556±0.035

IC50 = 122.7 ± 24.29 nM

チェン・プル Ki は次のように推定することが出来る:

Ki = 105.6 ± 20.92 nM

表 2.1 化合物 B に阻害されたモルモットの脳組織での化合物 A の結合率

化合物 B	化合物 A	化合物 B	化合物 A
n M	結合 CPM	n M	結合 CPM
0.0 (a)	2494.5		
0.1	2416.7	39.8	1781.2
0.158	2705.8	63.1	1665.6
0.251	2402.8	100.0	1738.5
0.398	2543.2	158.0	1528.7
0.631	2228.5	251.0	1488.3
1.0	2216.4	631.0	1208.5
1.58	2137.9	1000.0	1149.4
2.51	2125.5	1580.0	973.1
3.98	1867.6	2510.0	832.2
6.31	1926.9	3980.0	716.1
10.0	1732.2	6310.0	684.0
15.8	1769.8	10000.0	613.3
25.1	1775.3	0.0 (b)	425.3

(a) 2.5nM 化合物 A, (b) 非特異結合

2.2. 再解析

原著および翻訳本を読んでも推定されたパラメータの意味が難解である.表 2.1の データを用いて, *TopとBottom*を持つシグモイド曲線を当てはめてようとしても,解は 収束しない.そこで,データリスト上で,(a)のデータを陽性対照,(b)のデータを陰性 対照としたシグモイド曲線のあてはめを行った.

Х	z1	Z2	z3	у
陽性対照	0	0	1	2494.5
0.100	0	1	0	2416.7
0.158	0	1	0	2705.8
0.251	0	1	0	2402.8
:				
:				
6310	0	1	0	684.0
10000	0	1	0	613.3
陰性対照	1	0	0	425.3

表 2.2 陽性および陰性対照, ダミー変数

図 2.1 JMP での計算式

計算式中の"Log"は、自然対数"ln"である。

図 2.2 JMP によるラジオリガンド・アッセイのシグモイド曲線

备2						
<u>//</u> +	SSE	DFE	MSE		RMSE	
428890.	9616	23	18647.433	13	6.5556	
パラメータ		推定値	近似標準訃	髪差	下側信頼限界	上側信頼限界
gamma	-0.363	918562	0.048366	48	-0.469583	-0.28909
EC50	140.82	452944	65.6902	43	51.6591548	
bottom	326.60	834391	127.4557	37	78.9965646	556.790037
top	2575.2	579341	98.53316	51	2391.51663	2791.56651

表 2.3 JMP による推定値

陰性および陽性対照をモデルに入れることのより解が求まった.ただし, EC50の95% 信頼区間は,求めらていない.

3. 変数変換によるパラメータの推定(ロジット変換を追加)

非線形での推定値

図 3.1 ヒスタミンによる平滑筋の収縮

ロジット変換

y を、最大値と最小値の範囲でロジット変換し、x を自然対数として、回帰分析を行なう.これは非線型シグモイド曲線のあてはめの簡便法である.

図 3.2 経験ロジット変換後の回帰直線のあてはめ
 全データ: logit = -0.444816 + 1.0327322 ln_x
 O印のみ: logit = -0.475207 + 1.1450823 ln_x

_	表 3.1 経験ロジット変換								
	x	ln_x	у	p^*					
	0.01	-4.61	1	0.006					
	0.0316	-3.45	3	0.017					
	0.1	-2.30	5	0.029					
	0.316	-1.15	23	0.134					
	1	0.00	66	0.384					
	3.16	1.15	113	0.657					

2.30

3.45

4.61

5.76

10.0

31.6

100.0

316.0

*logit** (-5.14) -4.03 -3.51 -1.87 -0.47 0.65

2.42

(5.14)

(5.14)

(3.16)

 $p^* = (y+0.5) \ / \ (171+1), \quad logit^* = \ln(p^*/(1-p^*))$

158

171

171

165

0.919

0.994

0.994

0.959

4. 非線形回帰の計算方式(幾つかの追加)

4.1. ガウス・ニュートン法による逐次計算、ドレーパー・スミスの事例

(JMP スクリプトで分散共分散行列の追加)

JMPのスクリプト言語での結果

// The Nonlinear regression model Dreper & Smith 2003-1-21 Y. Takahashi

x=[8, 8, 10, 10, 10, 10, 12, 12, 12, 12, 14, 14, 14, 16, 16, 16, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 2 4, 26, 26, 26, 28, 28, 30, 30, 30, 32, 32, 34, 36, 36, 38, 38, 40, 42];

 $y = \begin{bmatrix} 0. \ 49, \ 0. \ 49, \ 0. \ 48, \ 0. \ 47, \ 0. \ 48, \ 0. \ 47, \ 0. \ 46, \ 0. \ 46, \ 0. \ 45, \ 0. \ 43, \ 0.$

```
A = x || y ;
b = [0.30, 0.02]; show(round(b,4));
for(i=1, i<=4, i++,
    alpha=b[1];
    beta=b[2];
    fx = alpha+(0.49-alpha) :* exp(-beta :*(x-8));
    d_alpha = 1-exp(-beta :*(x-8));
    d_beta = -(0.49-alpha) :* (x-8) :* exp(-beta :*(x-8));
    z = d_alpha || d_beta;
    delta=inverse(z`*z)*z`*(y-fx);
    b=b+delta; show(round(b,4));
```

```
);
```

Round (b, 4): [0.3, 0.02] Round (b, 4): [0.8416, 0.1007] Round (b, 4): [0.3901, 0.1004] Round (b, 4): [0.3901, 0.1016] Round (b, 4): [0.3901, 0.1016] alpha beta

s = (y-fx) * (y-fx); show(round(s, 6)); n=nrow(z);

```
p=ncol(z);
sigma2= s / (nrow(z)-ncol(z)); show(round(sigma2, 6));
zpz=z`*z;
cov=inv(z`*z) :* sigma2; show(round(cov, 6));
Round(s, 6):[0.005002]
Round(sigma2, 6):[0.000119]
Round(cov, 8):
[ 0.00002545 0.00005984,
        0.00005984 0.0001785 ] /* 分散共分散 */
```

```
SE(alpha)=0.005045 0.007736
0.007736 SE(beta)=0.01336
```

JMPの非線形モデルでの結果

解						
	SSE	DFE	MSE		RMSE	
0.0050016	796	42	0.0001191	0.01	09127	
パラメータ		推定値	近似標準	誤差	下側信頼限界	- 上側信頼限界
alpha	0.390	1398407	0.00504	641	0.37794914	0.39916741
beta	0.1010	6321795	0.01335	831	0.07679523	0.13207624

SAS/NLINでの結果

```
proc nlin data=d01 method=gauss listall;
    parms alpha=0.30 beta=0.02;
    model y = alpha + (0.49 - alpha) * exp(-beta*(x-8));
run;
```

The NLIN Procedure Dependent Variable y Method: Gauss-Newton Iterative Phase

			Sum of
Iter	alpha	beta	Squares
0	0.3000	0.0200	0.0263
1	0.3169	0.0225	0.0259
2	0.3312	0.0253	0.0253
3	0.3552	0.0313	0.0252
4	0.3806	0.0423	0.0249
5	0.4097	0.0729	0.0245
6	0.3968	0.1023	0.00594
7	0.3902	0.1016	0.00500
8	0.3901	0.1016	0.00500
9	0.3901	0.1016	0.00500

Estimation	Summary
Method	Gauss-Newton
Iterations	9
Subiterations	9
Average Subiteration	ns 1
R	1.511E-7
PPC(beta)	1.287E-7
RPC(beta)	5.613E-6

-20 -

	Object		1.42E-10			
	Objective		0.005002			
	Observations	Read	44			
	Observations	Used	44			
	Observations	Missing	0			
		Sum of	Mean		Approx	
Source	DF	Squares	Square	F Value	Pr > F	
Regression	2	7.9820	3.9910	33513.1	<. 0001	
Residual	42	0.00500	0.000119			
Uncorrected Total	44	7.9870				
Corrected Total	43	0.0395				
		Approx				
Parameter	Estimate	Std Error	Approxima	te 95% Con	fidence Lim	its
alpha	0.3901	0.00504	0.3800	0.4003	3	
beta	0.1016	0.0134	0.0747	0.1286	6	
	Approxima	te Correlatio	n Matrix			
	nppronima	alnha	heta			
	alpha	1.0000000	0.8878601			
	heta	0.8878601	1,0000000			

4.2. ニュートン・ラフソン法(Newton-Raphson Method)追加

統計学用語辞典、新曜社()より

数値最適化法の1つで、目的関数を2次までのテイラー級数で局所的に近似し(→テ イラー近似)、近似した二次関数の最適解を、目的関数の逐次近似改良に利用する方法. x & n次元変数、f & 2回以上微分可能な関数とするとき、 $f(x) & x_k$ において2次ま でテイラー展開すると

$$f(x) \approx f(x_k) + g'(x_k)(x - x_k) + \frac{1}{2}(x - x_k)'H(x_k)(x - x_k)$$
(1)

を得る. ただし、

$$g(x) = \frac{\partial f(x)}{\partial x} \bigg|_{x=x_k}$$

は x_k におけるf(x)の勾配、また

$$H(x_k) = \frac{\partial^2 f(x)}{\partial x \partial x'} \bigg|_{x=x_k}$$

はヘシアン (→ヘシアン行列) と呼ばれている. (1) の右辺は

$$x_{k+1} = x_k - H^{-1}(x_k)g(x_k)$$
(2)

で最小値をとる.

注) {なぜ?

$$f(x) \approx f(x_k) + g'(x_k)(x - x_k) + \frac{1}{2}(x - x_k)'H(x_k)(x - x_k)$$

終わり}

従って、ニュートン・ラフソン法の方向ベクトルは

$$d_k = -H^{-1}(x_k)g(x_k)$$

となる.移動の分量は、純粋な形では $\alpha_k = 1$ {これは何か?} とするが、fの形が二次 関数から離れているほど、[‡]ラインサーチが勧められる.

制約のない最小値問題で、x*が局所的最適解であるためにの必要十分条件は

- (i) $g(x^*) = 0$
- (ii) *H*(*x**)は正値

で与えられる. fが連続な二次偏導関数をもつとき、H(x)はx*の近くでは正値とな

るが、 x^* から離れたところでは、その正値性が保証されない.このため、ニュートン・ ラフソン法を用いるときは、できるだけ解 x^* に近い初期値 x_0 を探す工夫が必要であり、 また、ある x_k で $H(x_k)$ が正値でなくなったときの解決法が必要となる.たとえば、可 能な限り小さな非負の数 ε_k によって、 $\varepsilon_k I + H(x_k) o^*$ 固有値をすべて、ある正の定数 δ よりも大きくすることができる.このとき、方向ベクトルは

 $d_{\iota} = -[\varepsilon_{\iota}I + H(x_{\iota})]^{-1}g(x_{\iota})$

で与えられる. 解の近くで、 $H(x_k)$ の固有値がすべて δ より大きくなれば、当然 ε は0 となり {どういうことか? }、基本的なニュートン・ラフソン法に立ち戻ることになる. また、f が尤度関数の対数のとき (2) の $H(x_i)$ 代わりに

$$-I(x_k) = E \frac{\partial^2 f}{\partial x \partial x'} \bigg|_{x=x_k} = -E \left[\frac{\delta f}{\delta x} \left(\frac{\delta f}{\delta x} \right)' \right]_{x=x_k}$$

を用いる方法をスコアリング法と呼ぶ.

ニュートン・ラフソン法は、2次のオーダーで収束するという望ましい収束特性を持つが、解から離れたところではスコアリング法の方が頑健である(→頑健性)といわれている.(Kendall, M.G. & Stuart, A., 1979; Luenberger, D.G., 1973) 〔石塚〕

4.3. テーラー近似(approximation by Taylor expansion) 追加

確率変数 X の関数 g(X) に関して、 g(X) を点 a の回りでテイラー展開

$$g(x) = g(a) + g'(a)(X-a) + \frac{g'(a)}{2}(X-a)^2 + \dots + \frac{g^{(n)}(a)}{n2}(X-a)^n + \dots$$

して、その低次の項、たとえば、g(x)の2つの項、だけを利用して各種の近似計算をお こなうことがあるが、これをテイラー近似と呼ぶ。

たとえば、確率変数 X の期待値が $E(X) = \mu$ 、分散が $V(X) = \sigma^2$ で与えられていると き、X を関数 g によって変換して得られた確率変数 Y = g(X)の期待値は、g(X)の回 りでテイラー展開し、 $(X - \mu)^2$ の項までとって

$$g(X) \approx g(\mu) + g'(\mu)(X - \mu) + \frac{g''(\mu)}{2}(X - \mu)^2$$

とし、両辺の期待値をとることによって

$$E(Y) = E[g(X)] \approx g(\mu) + \frac{g''(\mu)}{2}\sigma^2$$

で近似的に与えられる.Yの分散については、

$$Y - g(\mu) - \frac{g''(\mu)}{2}\sigma^2 \approx g'(\mu)(X - \mu) + \frac{g''(\mu)}{2}[(X - \mu)^2 - \sigma^2]$$

とし、この両辺を二乗して期待値をとることによって*V*(*Y*)≈[*g*'(*µ*)]²σ²で近似的に与 えられる. (Lindley, D.V., 1965; 竹内啓、1975c) 〔渡部〕

4.4. ニュートン・ラフソン法の例題 , 追加

 $f = x^4 - x^3 - 20x$ が最小となる x をニュートン・ラフソン法で求めよう. このために $g = f' = 4x^3 - 3x^2 - 20 = 0$

となる*x*を見つける.

$$h = g' = 12x^2 - 6x$$

として、

$$x_{k+1} = x_k - \frac{g}{h}$$

を g / h が 0 に近くなるまで反復する。

// Newton Raphson Method 2003-02-06 Y.Takahashi

x = [1];d = [1];

```
f = x^4 - x^3 - 20 :* x ;
  g = 4 : * x^3 - 3 : * x^2 - 20;
  h = 12 :* x^2 - 6 :* x ;
  d = g / h;
  a = x || f || g || h || d;
  show(round(a,4));
  x = x - d ;
  );
i:1 Round (A, 4): [1 -20 -19 6]
                                             -3.1667]
i:2 Round(A, 4):[4.1667 145.7369 217.2685 183.3333 1.1851]
i:3 Round (A, 4): [2.9816 -7.1093 59.3521 88.7874 0.6685]
i:4 Round (A, 4): [2.3131 - 30.0111 13.4526 50.3262 0.2673]
i:5 Round (A, 4): [2.0458 -31.9616 1.6926 37.948
                                              0.0446]
i:6 Round (A, 4): [2.0012 -32 0.0425 36.0496 0.0012]
i:7 Round (A, 4): [2 -32
                            0
                                     36
                                              0 ]
```

4.5. ニュートン・ラフソン法の例題(ドレーパー・スミスの例で)追加、

2	次の	偏微分	
	1	29:5	MODEL.y = alpha + (0.49 - alpha) * EXP(- beta * (x - 8));
	1	29:5	<pre>@MODEL.y/@alpha = 1 + -1 * EXP(- beta * (x - 8));</pre>
	1	29:5	<pre>@MODEL.y/@beta = (0.49 - alpha) * -1 * (x - 8) * EXP(- beta * (x - 8));</pre>
	1	29:5	@@MODEL.y/@alpha/@beta = -1 * -1 * (x - 8) * EXP(- beta * (x - 8));
	1	29:5	@@MODEL.y/@beta/@alpha = -1 * -1 * (x - 8) * EXP(- beta * (x - 8));
	1	29:5	@@MODEL.y/@beta/@beta = (0.49 - alpha) * -1 * (x - 8) * -1 * (x - 8) * EXP(- beta * (x - 8));

非線形の JMP での数値解析で、ニュートン・ラフソンは不安定であること、次の文献もその他の方法として扱っているので、計算事例は作らない。

基本は, ガウス・ニュートン法

Bates, D.M. (1988), Nonlinear Regession Analysis and its Apprications

3.5 Other Techniques, 3.5.1 A Newton-Raphson Method

5. 効力比

5.1. 反応が直線的な場合の効力比

標準の化合物に対して,新しい化合物の効力を比較するために,標準の化合物の用量 反応関係から,ある反応となる用量を逆推定し,同様に新しい化合物でも同じ反応とな る用量を逆推定し,その比あるいは差から,化合物間の効力を比較をする.用量反応関 係が直線的で,それぞれの化合物の傾きが同じとみなすことができれば,さらに一般的 に,新しい化合物は,標準の化合物に対して,m倍の効力があると,実験結果を要約で きる.

この問題は、生物検定法で平行性検定といわれて定式化されている.この方法は、共 分散分析の応用問題として簡単に解くことができるのであるが、効力比と、その 95% 信頼区間を出すためには、デルタ法、あるいは、フィラーの式を用いて信頼区間を計算 する必要がある.しかし、多くの統計ソフトは、この問題をサポートしていない.

第12回のセミナーのテキスト 3.4節で,回帰直線のあてはめを非線形回帰モデルで 行い,逆推定とその 95%信頼区間の算出も統計ソフトの標準的な出力で得ることがで きることを示したが,この方法を,さらにダミー変数を用いて,線形共分散分析を非線 形に拡張することにより,効力比とその 95%信頼区間も,ダミー変数の与え方により 標準的な非線形回帰モデルの統計ソフトを用いて得ることができる.

第1回目の高橋セミナーで取り上げた例を再度用いる. アンジオテンシンIをラットの大 腿静脈に注入すると、血圧上昇が起きる。降圧薬は、これを阻害し血圧を下げる。したがっ て、血圧上昇が少ないほど降圧効果があると判断する。(Hubert ら (1988) のラットに対す る降圧薬のデータ).

									U,		
Drug	Dose (mg/kg)					デーク	Ż				
S	10	48	49	52	53	34	50	58	48	46	56
	30	50	37	36	39	34	36	41	40	30	40
	100	26	20	25	26	27	24	28	25	22	23
	300	20	14	12	16	15	11	18	16	14	13
Т	1	44	48	48	56	47	56				
	3	35	39	42	52	41	44				
	10	23	32	33	48	33	28				
	30	10	19	19	27	21	16				
	100	6	5	20	17	15	9				

表 5.1 アンジオテンシン I 注入後の血圧上昇 (mmHg)

降圧効果	S 薬	T 薬	差の逆推定(S – T)
Y	log(dose) (95% cl)	log(dose) (95% cl)	log(dose) (95% cl)
40 mmHg	1.358 (1.267, 1.441)	0.577 (0.474, 0.673)	0.781 (0.659, 0.902)
30	1.822 (1.743, 1.902)	1.041 (0.950, 1.134)	0.781 (0.659, 0.902)
20	2.286 (2.195, 2.386)	1.505 (1.406, 1.614)	0.781 (0.659, 0.902)

表 5.2 S 薬と T 薬の逆推定、差の逆推定

結果を 表 5.2 に整理する。30mmHgの効果を得るためにS薬は、10^{1.822} = 66.4 mg/kgを必要 とし、T薬では 10^{1.041} = 11.0 mg/kg と少量で同じ効果があることが示されている。

反応 y が 30 となる標準薬 S:○印の用量は 66.4, 試験薬 T:×の 用量は 11.0, 従って, 効力比は 6.03 倍である. 非線形回帰を用 いると効力比と,その 95%信頼区間を直接求めることができる.

> S \underline{x} : $\hat{y}_{s} = 69.27 - 21.55 \log(x)$ T \underline{x} : $\hat{y}_{T} = 52.45 - 21.55 \log(x)$

5.2. 単回帰分析の問題を非線形回帰で解く方法(復習)

表 5.3 に反応yがxに対して直線となる例を示す.このデータをプロットして,回帰直線を求め,その95%信頼区間を図示している.

X 5.5 E/R	
x	У
-4.61	-5.14
-3.45	-4.03
-2.30	-3.51
-1.15	-1.87
0.00	-0.47
1.15	0.66
2.30	2.45
3.45	5.69
4.61	5.69
5.76	3.22

表 5.3 直線状の用量反応

このデータは,表 3.1 のln_xとlogit*をそれぞれ,xとyにしたデータである.

回帰式は、y = -0.346 + 1.070xであり、y = 0となる x_0 は、

 $y = \beta_0 + \beta_1 x \tag{5.1}$

なので,

$$0 = \beta_0 + \beta_1 x_0$$

とおいて,

$$x_0 = -\frac{\beta_0}{\beta_1}$$
$$\hat{x}_0 = -\frac{\hat{\beta}_0}{\hat{\beta}_1} = -\frac{-0.346}{1.070} = 0.323$$

と推定される.

図 5.2 回帰直線と95%信頼幅 y=-0.346+1.070x,反応がy=0となる場合の逆推定

式 (5.1) の傾き β_1 の積の形となるように変形し,

$$y = \beta_1 \left(\frac{\beta_0}{\beta_1} + x\right) \tag{5.2}$$

推定したいパラメータを $\beta_2 = -(\beta_0 / \beta_1)$ と置き換え,

 $y = \beta_1(-\beta_2 + x) \tag{5.3}$

として、非線形回帰モデルで解くと、y=0の場合xの逆推定としての β_2 の推定値が 0.323 と直接求まり、その近似 SE とプロファイル尤度に基づいた正確な 95%信頼区間 が求められれる.

表 5.4 非線形回帰として解いた結果 ($\beta_2 = x_{y=0}$)

解						
	SSE	DFE	MSE		RMSE	
14.237022	2758	8	1.7796278	1.33	40269	
パラメータ		推定値	近似標準詞	呉差	下側信頼限界	上側信頼限界
beta1	1.070	2188163	0.127546	627	0.77609659	1.36434104
beta2	0.324	6495323	0.395314	25	-0.6442115	1.25243882

次に、 $y=5 \ b \ x_{y=5}$ は、

$$5 = \beta_0 + \beta_1 x_{y=5}$$

とおいて,

$$x_{y=5} = \frac{5 - \beta_0}{\beta_1}$$

$$\hat{x}_{y=5} = \frac{5 - \hat{\beta}_0}{\hat{\beta}_1} = \frac{5 - (-0.346)}{1.070} = 4.996$$

である. $\beta_{2(y=5)} = x_{y=5}$ とおいて, 簡単な式の変形を行い,

$$\beta_{2(y=5)} = \frac{5}{\beta_1} - \frac{\beta_0}{\beta_1}$$

式(5.3)に代入すると次式が得られる.

$$y = \beta_1 \left(\frac{5}{\beta_1} - \beta_{2(y=5)} + x\right)$$
$$y = \beta_1 \left(-\beta_{2(y=5)} + x\right) + 5$$
(5.4)

 $\beta_1 \ge \beta_{2(y=5)}$ を推定するために、非線形回帰モデルで解くと 表 5.5 のように $\beta_{2(y=5)}$ の推定値が 4.995 となり、その近似のSEと正確な 95%信頼区間が求められる

表 5.5 非線形回帰の結果 ($\hat{\beta}_{2(y=5)} = x_{y=5}$)

解						
	SSE	DFE	MSE		RMSE	
14.237022	758	8	1.7796278	1.33	340269	
パラメータ		推定値	近似標準	誤差	下側信頼限界	上側信頼限界
beta1	1.0702	2188163	0.12754	627	0.77609659	1.36434104
beta2_y5	4.996	5913108	0.65797	594	3.73888982	6.97660895

5.3. 平行線検定の効力比の直接推定

効力比を求めるためには、ダミー変数を用いて共分散分析を非線型の回帰式とする必要ある. 効力比を直接求める前に、S 薬および T 薬の y の反応が y_0 である場合の $x_{y_0}^s$ および $x_{y_0}^T$ を求めよう。このためにインディケータタイプのダミー変数 z_1 :S 薬のとき 1 それ以外は 0、ダミー変数 z_2 :T 薬のとき 1 それ以外は 0 を用いて、

 $y_i = \beta_1(-(\beta_{2,1}z_1 + \beta_{2,2}z_2) + \log x_i) + y_0 + e_i$ (5.4)

としたときに、 $\log x_{y_0}^{s} = \hat{\beta}_{2,1}$ および $\log x_{y_0}^{T} = \hat{\beta}_{2,2}$ により、応が y_0 である場合の $\log x_{y_0}^{s}$ および $\log x_{y_0}^{T}$ が推定される(ここでの x に対いての対数は、常用対数" \log "を用いている)。

T薬のS薬に対する効力比は、

$$\rho^{\mathrm{T}} = \frac{10^{\log x_{y_0}^{\mathrm{S}}}}{10^{\log x_{y_0}^{\mathrm{T}}}} = 10^{(\log x_{y_0}^{\mathrm{S}} - \log x_{y_0}^{\mathrm{T}})}$$

である。これを直接求めるためには、ダミー変数をzo:常に1、を用いて、

$$y_i = \beta_1(-(\beta_{2,0}z_0 + \beta_{2,(2-1)}z_2) + \log x_i) + y_0 + e_i$$
 (5.5)

のように、"切片"とT薬のインディケータ型ダミー変数を用いたとき、"切片"の回帰 係数の推定値は、簡単な計算からダミー変数が"0"となるS薬の回帰係数の推定値と なり、T薬のインディケータ型ダミー変数に対応する回帰係数の推定値は、(T薬-S薬) の回帰係数の推定値となることが分かるので、 $\log \hat{x}_{y_0}^{s} = \hat{\beta}_{2,1}$ および

 $\log(\hat{x}_{y_0}^{\mathsf{T}} - \hat{x}_{y_0}^{\mathsf{S}}) = \hat{eta}_{2,(2-1)}$ となる。効力比は、したがって、

$$\hat{\rho}_{\rm T} = 10^{-\hat{\beta}_{2,(2-1)}} \tag{5.6}$$

で求められる。

JMPによる計算結果を、表 5.6 に示す。この推定されたパラメータを、式(5.4) に 代入して整理すると、図 5.1 のに示した回帰直線が求まる。

- S 薬: $\hat{y}_i = \hat{\beta}_1(-\hat{\beta}_{2,1} + \log x_i) + y_0$ $\hat{y}_i = -21.55(-1.822 + \log x_i) + 30$ $\hat{y}_i = 69.27 - 21.55 \log x_i$
- T 薬: $\hat{y}_i = \hat{\beta}_1(-\hat{\beta}_{2,2} + \log x_i) + y_0$ $\hat{y}_i = -21.55(-1.042 + \log x_i) + 30$ $\hat{y}_i = 52.45 - 21.55 \log x_i$

表 5.6 非線形回帰モデルによる 30mmHg での逆推定

解							
	SSE	DFE	MSE		RMSE		
1946.187	7765	67	29.047579	5.38	95806		
パラメータ		推定値	近似標準	誤差	下側信頼限	界 上側信	頼限界
beta1	-21.55	162599	1.03188	445	-23.61127	6 -19.4	91976
beta2_1	1.8220	810077	0.03974	245	1.7431524	9 1.902	54559
beta2_2	1.0418	887343	0.04572	308	0.9506742	4 1.13	40437

効力比を求める式 (5.5) に対応するJMPでの計算結果を 表 5.7 に示す。T薬のS薬に 対する効力比は、式 (5.6) より、

$$\hat{\rho}_{\rm T} = 10^{-\beta_{2,(2-1)}} = 10^{-(-0.7802)} = 6.028$$

6.028 倍となり、その 95%信頼区間は、(10^{0.6593}、10^{0.9016}) = (4.56、7.93) と、表 5.2 の 結果と一致する。

解						
	SSE	DFE	MSE		RMSE	
1946.1877	7765	67	29.047579	5.38	395806	
パラメータ		推定値	近似標準	誤差	下側信頼限界	- 上側信頼限界
beta1	-21.55	5162599	1.03188	445	-23.611276	-19.491976
beta2_0	1.8220	0810077	0.03974	245	1.74315249	1.90254559
beta2_21	-0.780	0192273	0.06041	951	-0.9016366	-0.6593412

表 5.7 非線形回帰モデルによる効力比の推定

5.4. Emax が共通な計量値のシグモイド曲線の効力比

計量値のシグモイド反応は,

$$y = \frac{Emax}{1 + e^{\gamma(\ln(EC50) - \ln(x))}}$$
 (5.7)

のように EC50 を用いた式で表してきた.式(5.7)の指数部分

 $-\eta = \gamma(\ln(EC50) - \ln(x))$

は,式 (5.3)の

$$\eta = \beta_1(-\beta_2 + x)$$

に対応するのであるが符号が異なっている.これは、式(5.7)をηを用いたシグモイ ド曲線は、e^{-η}と回帰式ン回帰式に対して負なのであるが、式を簡略化したために符号が 異なっているように見える.

$$y = \frac{e^{\eta}}{1 + e^{\eta}} Emax = \frac{1}{1 + e^{-\eta}} Emax = \frac{Emax}{1 + e^{\gamma(\ln(EC50) - \ln(x))}} = \frac{Emax}{1 + e^{-\gamma(-\ln(EC50) + \ln(x))}}$$
(5.8)

反応が左右に振れる"平行な"シグモイド曲線の同時推定は、平行線検定法と同様に

-32-

ダミー変数を用いて解くことができる。標準薬を D_1 、試験薬を D_2 、および、 D_3 としたときに、インディケータ型ダミー変数をそれぞれ z_1 、 z_2 、および、 z_3 としたときに、

 $\beta_1(-(\beta_{2,1}z_1 + \beta_{2,2}z_2 + \beta_{2,3}z_3) + \ln x) \qquad (5.9)$

とダミー変数を用いた形に拡張すれば、標準薬を D_1 、試験薬を D_2 、および、 D_3 としの *EC50*の推定値がダミー変数の回帰係数の推定値として求めることができる。

また、常に $z_0 = 1$ となる"切片"を求めるためのダミー変数としよう。 $z_1 & z_0$ に置き換えると、

 $\beta_1(-(\beta_{2,0}z_0 + \beta_{2,2}z_2 + \beta_{2,3}z_3) + \ln x) \qquad (5.10)$

 z_0 の回帰係数 $\beta_{2,0}$ は、標準薬を \mathbf{D}_1 の ln(*EC50*)の推定値となり、 z_2 の回帰係数 $\beta_{2,1}$ は、 試験薬標 \mathbf{D}_2 と準薬を \mathbf{D}_1 の ln(*EC50*)の差の推定値となり、同様に z_3 の回帰係数 $\beta_{2,3}$ は、 試験薬標 \mathbf{D}_3 と準薬を \mathbf{D}_1 の ln(*EC50*)の差の推定値となる。

試験薬間の効力比と 95%信頼区間を求めたい場合は、これらのダミー変数の性質を 利用して、

 $\beta_1(-(\beta_{2,1}z_1 + \beta_{2,0}z_0 + \beta_{2,3}z_3) + x)$

のように、 z_2 の代わりに z_1 をダミー変数とすると、試験薬 D_2 を基準とした、標準薬 D_1 との差、試験薬標 D_3 との差の推定値が得られる。

ヒスタミン誘発収縮反応による事例

モルモット摘出回腸のヒスタミン誘発収縮反応に及ぼすG薬の実験について取り上げる。 実験は、表 5.8 に示すように4×4のラテン方格で行われた。

		標本							
実験日	モルモット	胃側	<	>	肛門側				
	番号	部位 1	部位 2	部位 3	部位 4				
1	1	A: 蒸留水	B: 0.01 μ M	C: 0.1 µ M	D : 1 μ M				
1	2	B: 0.01 μ M	C: 0.1 µ M	D : 1 μ M	A: 蒸留水				
2	3	C: 0.1 µ M	D : 1 μ M	A: 蒸留水	B: 0.01 μ M				
2	4	D: 1 μ M	A: 蒸留水	B: 0.01 μ M	C: 0.1 µ M				

表 5.8 実験デザイン(ラテン方格、G薬の濃度)

実験手順

手順1)1匹目のモルモットから回腸を摘出し、一本の長さが約20mmとなるように4本の 標本を作製する。標本は、胃側から肛門側へ1~4の番号を付与する。

手順 2) 4 連のマグヌス装置に標本を 1 ずつ懸垂し、 それぞれヒスタミン濃度が 300 µ M と

なるまで累積的に添加し、懸垂した回腸の最大収縮高を添加前値とする。 手順3)回腸中のヒスタミンを洗浄する。

- 手順 4) 4 連のマグヌス装置に、それぞれ蒸留水、D 薬の 0.01、0.1、1.0 μ M の順にする。
- 手順5)マグヌス装置にヒスタミン濃度が0.01μMとなるように添加し、回腸の収縮が止まっ たら、次にヒスタミン濃度が0.03μMとなるように添加する。この累積的添加をス タミン濃度が300μMとなるまで繰り返す。この間の回腸の収縮高をキモグラフ (kymograph、筋肉の運動や心臓の拍動などを記録する装置)に連続的に記録する。

手順 6) 2 匹目のモルモットについて手順 1 からの操作を繰り返す。ただし、注入順は表 1

に示した手順4で、G薬の3用量を先に行い、蒸留水は最後とする。

この実験のモルモット番号2の場合の蒸留水とG薬の3濃度のデータを取り上げる。 表 5.9 に実験から得られた生データを、表 5.10 に最大収縮高を100%とする反応率に データを変換した結果を示す。

モルモット	回腸	処置	最大 収縮高		ヒスタミンによる収縮(収縮高(mm)) 処置後								
番号	部位		300 <i>µ</i> M	0.01µM	0.03µM	0.1 <i>µ</i> M	0.3µM	1 <i>µ</i> M	3 <i>µ</i> M	10µM	30µM	100µM	300µM
2	1	D-0.01µM	158	1	1	3	9	50	98	141	165	170	169
	2	D-0.1µM	118	0	1	1	2	25	10	46	96	122	127
	3	$D-1\mu M$	163	0	0	1	0	1	2	6	54	120	136
	4	蒸留水	165	1	3	5	23	66	113	158	171	171	165

表 5.9 モルモット摘出回腸のヒスタミン誘発収縮反応に及ぼす G 薬の作用

○:蒸留水、×:G薬 0.01 μ M、△:G薬 0.01 μ M、□:G薬 0.01 μ M、

最大収縮高を用いたEmaxの基準化

図 5.3 から、それぞれのG薬存在下での収縮量を比較すると、明らかに異なる。これ は、同じモルモットの回腸であっても、最大収縮高が固体内の変動により同じにならな いことでも確認されている。そのような状況下においても、シグモイド曲線の傾きは同 じとみなせる。そこで、最大収縮高を 100%として、それぞれの収縮量を収縮率にする ことにより、*Emaxを*すべて 100 になる。

非線型回帰式は、式(5.8)および(5.9)より、

$$y_i = \frac{100}{1 + e^{\beta_1(-(\beta_{2,1}z_1 + \beta_{2,2}z_2 + \beta_{2,3}z_3 + \beta_{2,4}z_4) + \ln x_i)}} + e_i$$
(5.11)

となる。

ヒスタミン		蒸留水	0.01 μ M	0.1 μ M	1.0 µ M
x	$\ln x$	(158mm)	(118mm)	(163mm)	(165mm)
0.01	-4.61	0.6 %	0.6 %	0.0 %	0.0 %
0.0316	-3.45	1.8	0.6	0.8	0.0
0.1	-2.30	3.0	1.9	0.8	0.6
0.316	-1.15	13.9	5.7	1.7	0.0
1	0.00	40.0	31.6	21.2	0.6
3.16	1.15	68.5	62.0	8.5	1.2
10	2.30	95.8	89.2	39.0	3.7
31.6	3.45	103.6	104.4	81.4	33.1
100	4.61	103.6	107.6	103.4	73.6
316	5.76	100.0	107.0	107.6	83.4

表 5.10 最大収縮高を 100% とする反応率

()内は最大収縮高、データは最大収縮高(陽性対照)に対する割合

🚸 JMP - y_trt^	
ファイル(E) 編集(E) テーブル(T) 行(E) 列(C) 実験計画(DOE)(D) 分析(A) グラフ(G) ツール(Q) ヘルプ(H)	表示(火) ウィンドウ(火)
📗 🗈 🇀 😂 👗 🗈 🖻 🖉 🖉 🕞 ? 💠 🙆 💠 🖑 🥭 👂 +	ercent 🗾
😫 y_trt 🗋	
パラメータ 「 関数(グルーブ別)© OK パラメータの新規 beta1 = 1 beta2_1 = 0.5 beta2_2 = 0.5 beta2_3 = 3 beta2_4 = 4 ・ ・ ・ ・ ・	
1+ Exp - beta1 * - beta2_1 * z/ + beta2_2 * z/ + beta2_3 * z/ + beta2_	4 *z4)+ <u>[n_x]</u>]]]
100H 111V	

図 5.4 共通のシグモイド曲線の JMP での非線回帰式

beta2_1:蒸留水、beta2_2:G薬 0.01 μM、beta2_3:G薬 0.1 μM、beta2_4:G薬 1.0 μM インディケータ型ダミー変数、z1、z2、z3、z4 は、G薬の濃度に対応する

表	5.11	G 薬の濃度別の	ln(EC50)の推定値
1	J.11		III(LCS0	

解							
	SSE	DFE	MSE		RMSE		
931.50834	1419	35	26.614524	5.15	89266		
パラメータ		推定値	近似標準詞	呉差	下側信頼限	界	上側信頼限界
beta1	1.373	9628006	0.096352	209	1.2019952	24	1.58373101
beta2_1	0.372	7550281	0.115745	561	0.1312224	15	0.6137519
beta2_2	0.690	0832172	0.115810	075	0.4529354	19	0.9262799
beta2_3	2.507	9359239	0.115590	046	2.28015	06	2.73147241
beta2_4	3.9992	2948568	0.116054	418	3.7679236	52	4.23439049

beta1: 共通の傾き、beta2_i: G 薬の各濃度

10

х

100

1000

図 5.5 傾きが 1.37 と共通のシグモイド曲線 ○:蒸留水、×:G薬 0.01 μM、△:G薬 0.01 μM、□:G薬 0.01 μM、

1

G 薬の各濃度に対して、平滑筋を 50%収縮させるヒスタミンの濃度 *EC50* 解は、蒸留水では、 $e^{0.373}$ = 1.45 μ M、G 薬 0.01 μ M 存在下では $e^{0.690}$ = 12.28 μ M、G 薬 0.1 μ M 存在下では $e^{2.590}$ = 12.28 μ M、G 薬 1 μ M 存在下では $e^{3.999}$ = 54.56 μ M とそれぞれ推定される。

蒸留水を基準にしたEC50の差の推定と95%信頼区間

.01

.1

蒸留水の場合のシグモイド曲線の EC50 を基準にして、G 薬の各濃度群の EC50 との 差と 95 信頼区間を求めよう。差の信頼区間が 0 を含まなければ、蒸留水との間に統計 的に有意な差があり、0 を含めば、有意な差でないことになる。

差の推定値を求めるのは、式 (5.9) と (5.10) から、蒸留水のインディケータ型ダミー 変数 z_1 を、すべて 1 であるダミー変数 "切片" z_0 に変更することにより、 z_2 の回帰係 数の推定値 $\hat{\beta}_{2,2}$ が、G 薬 0.01 μ M の EC50 の推定値から、蒸留水の EC50 からの差の推 定値となる。

$$y_i = \frac{100}{1 + e^{\beta_1(-(\beta_{2,0}z_0 + \beta_{2,2}z_2 + \beta_{2,3}z_3 + \beta_{2,4}z_4) + \ln x_i)}} + e_i$$
(5.12)

解						
	SSE	DFE	MSE		RMSE	
931.5083	4477	35	26.614524	5.15	589266	
パラメータ		推定値	近似標準詞	呉差	下側信頼限界	₹ 上側信頼限界
beta1	1.373	9792482	0.096343	361	1.20199524	1.58373101
beta2_0	0.372	7524702	0.115749	905	0.13122245	0.61375191
beta2_2	0.317	3287085	0.163740	038	-0.0205701	0.65502639
beta2_3	2.135	1650076	0.16358	836	1.80452414	2.46384527
beta2_4	3.626	5499777	0.163910	073	3.29204735	3.96377298

表 5.12 JMP による EC50 の差の推定

表 5.11 と 表 5.11 のJMPで推定されたパラメータ(回帰係数)を整理し、antilogの 計算を追加し、元の濃度でのEC50、蒸留水を基準にした場合のEC50の比(倍)を示し た。G薬の最小用量 0.01 µM の 95%の信頼区間の対数の下限がわずかに 0 を下回ってい るので、統計的には、「有意差なし」であるが、シグモイド曲線のわずかなずれに対し 鋭敏にキャッチしている。

EC50(*µ*M) ln (差) ln(*EC50*) 95%cl L 95%cl U 95%cl 倍 倍 $\overline{\beta}_{2,0}$ $\beta_{\scriptscriptstyle 2,1}$ 0.373 1.45 - $\beta_{2,2}$ 0.690 1.99 $\beta_{2,2}$ 0.317 1.4 -0.021 0.655 (0.98, 1.9) $\beta_{2,3}$ $\beta_{2,3}$ 2.508 12.28 2.135 8.5 1.805 2.464 (6.1, 11.7)3.999 $\beta_{2.4}$ 3.292 $\beta_{2,4}$ 54.56 3.627 37.6 3.964 (26.9, 52.7)

表 5.13 効力比

5.5. 陰性対照、および、陽性対象がある場合

反応 y が計量値で、薬物濃度あるいは薬物量の対数 x に対してシグモイド曲線となる 実験系で、薬物量が 0 の場合に、これは、溶媒対照群、コントロール群、あるいは、陰 性対照などと呼ばれるが、薬物濃度 0 の対数はマイナス無限大となり、このままでは、 シグモイド曲線をあてはめる非線型回帰モデルに、このデータを含めることができない。

陰性対照がある場合、薬物濃度を下げた場合に反応が、陰性対照に近づくような場合 に、シグモイド曲線のあてはめで推定される下限値 bottom と、陰性対照群のデータか ら推定される下限値 bottom を同時に推定するような非線型回帰モデルを作ることによ り解決できる。

陰性対照:
$$y_k^{\text{陰性}} = bottom + e_k^{\text{陰性}}$$

薬物濃度群:
$$y_i^{\text{x}} = bottom + \frac{top - bottom}{1 + \exp\{\gamma(\ln(EC50) - \ln(x_i))\}} + e_i^{\text{x}}$$

陽性対照: $y_j^{\text{BME}} = top + e_j^{\text{BME}}$

これらの3つの回帰式の誤差は、すべて平均0、分散 σ^2 と共通であるとする。ダミー 変数、 d_1 :陰性対照の場合に1、それ以外は0、 d_2 :薬物濃度群の場合に1、それ以外 は0、 d_3 :陽性対照の場合に1、それ以外は0、を考えよう。

$$y_i = bottom \cdot d_1 + (bottom + \frac{top - bottom}{1 + \exp\{\gamma(\ln(EC50) - \ln(x_i))\}}) \cdot d_2 + top \cdot d_3 + e_i$$

または、

$$y_{i} = \beta_{3}d_{1} + (\beta_{3} + \frac{\beta_{4} - \beta_{3}}{1 + \exp\{-\beta_{1}(-\beta_{2} + \ln(x_{i}))\}}) \cdot d_{2} + \beta_{4}d_{3} + e_{i}$$
(5.13)

このモデルをさらに拡張して、複数のシグモイド曲線の同時あてはめに拡張しよう。 その際に、複数のシグモイド曲線のパラメータ、傾き $\gamma(\beta_1)$ 、左右の位置 *EC50*(β_2)、 裾の位置 *bottom*(β_3)、飽和点の位置 *top*(β_4)のうち、どれが複数のシグモイド曲線に 共通で、どれが異なるのかを、実験前に規定しておく必要がある。

前節の収縮率(%)に変換した場合は、

傾き $\gamma(\beta_1)$: 同じ 左右の位置 EC50(β_2):異なる 裾の位置 bottom(β_3): 定数 = 0 飽和点の位置 top(β_4):定数 = 100

とし、左右の位置*EC50*(β_2)が異なる式(5.12)のような非線型回帰モデルを用いた。 収縮量(%)ではなく、収縮高(mm)の場合は、図 5.3 に示すように、

> 傾き $\gamma(\beta_1)$: 同じ 左右の位置 EC50(β_2): 異なる 裾の位置 bottom(β_3): 定数 = 0 飽和点の位置 top(β_4): 異なる

のように、2つのパラメータが異なるシグモイド曲線のあてはめが必用となる。左右の

位置 *EC50*(β₂)が異なる場合に、β₂を次に示す、

 $\beta_2 = \beta_{2,1} z_1 + \beta_{2,2} z_2 + \beta_{2,3} z_3 + \beta_{2,4} z_4 \qquad (5.14)$

のように複数のシグモイド曲線を識別するインディケータ型ダミー変数に展開した。これと同様に、飽和点の位置 $top(\beta_4)$ が異なるので、 β_4 を

 $\beta_4 = \beta_{4,1} z_1 + \beta_{4,2} z_2 + \beta_{4,3} z_3 + \beta_{4,4} z_4 \qquad (5.15)$

とすればよい。裾の位置 $bottom(\beta_3)$ は 0 であるので、式 (5.13) から、 β_3 を消去した 次ぎの式となり、

$$y_{i} = \frac{\beta_{4}}{1 + \exp\{-\beta_{1}(-\beta_{2} + \ln(x_{i}))\}} \cdot d_{2} + \beta_{4}d_{3} + e_{i}$$

この式の、 $\beta_2 \ge \beta_4$ をダミー変数を含む式 (5.14) と (5.15) に置き換え、

$$y_{i} = \frac{\beta_{4,1}z_{1} + \beta_{4,2}z_{2} + \beta_{4,3}z_{3} + \beta_{4,4}z_{4}}{1 + \exp\{-\beta_{1}(-(\beta_{2,1}z_{1} + \beta_{2,2}z_{2} + \beta_{2,3}z_{3} + \beta_{2,4}z_{4}) + \ln(x_{i})\}} \cdot d_{2}$$
(5.14)
+ $(\beta_{4,1}z_{1} + \beta_{4,2}z_{2} + \beta_{4,3}z_{3} + \beta_{4,4}z_{4}) \cdot d_{3} + e_{i}$

を得る。

JMPによる 計算例

この非線型回帰式は、ダミー変数が2種類あり、複雑なので、解析用のデータを表 5.14に示す。ダミー変数 z_1 、 z_2 、 z_3 、および、 z_4 は、G薬に対するインディケータ型 ダミー変数とし、"切片" z_0 も加えてある。第2番目のダミー変数は、陽性対照とヒ スタミンの逐次増量に対応したデータに対応する d_3 および d_2 である。

処置	z0	z1	z2	z3	z4	Х	ln_x	d2	d3	У
蒸留水	1	1	0	0	0	0.01	-4.61	1	0	1
蒸留水	1	1	0	0	0	0.032	-3.44	1	0	3
蒸留水	1	1	0	0	0	0.1	-2.3	1	0	5
蒸留水	1	1	0	0	0	0.316	-1.15	1	0	23
蒸留水	1	1	0	0	0	1	0	1	0	66
蒸留水	1	1	0	0	0	3.16	1.15	1	0	113
蒸留水	1	1	0	0	0	10	2.3	1	0	158
蒸留水	1	1	0	0	0	31.6	3.45	1	0	171
蒸留水	1	1	0	0	0	100	4.61	1	0	171
蒸留水	1	1	0	0	0	316	5.76	1	0	165
蒸留水	1	1	0	0	0	-	9.21	0	1	165
$0.01 \ \mu \ M$	1	0	1	0	0	0.01	-4.61	1	0	1
$0.01 \ \mu \ M$	1	0	1	0	0	0.0316	-3.45	1	0	1
$0.01 \ \mu \ M$	1	0	1	0	0	0.1	-2.3	1	0	3
$0.01 \ \mu \ M$	1	0	1	0	0	0.316	-1.15	1	0	9
$0.01 \ \mu \ M$	1	0	1	0	0	1	0	1	0	50
$0.01 \ \mu \ M$	1	0	1	0	0	3.16	1.15	1	0	98
$0.01 \ \mu M$	1	0	1	0	0	10	2.3	1	0	141
$0.01 \ \mu \ M$	1	0	1	0	0	31.6	3.45	1	0	165
$0.01 \ \mu \ M$	1	0	1	0	0	100	4.61	1	0	170
$0.01 \ \mu M$	1	0	1	0	0	316	5.76	1	0	169
$0.01 \ \mu M$	1	0	1	0	0	-	9.21	0	1	158
$0.1 \ \mu M$	1	0	0	1	0	0.01	-4.61	1	0	0
$0.1 \ \mu M$	1	0	0	1	0	0.032	-3.44	1	0	1
$0.1 \ \mu M$	1	0	0	1	0	0.1	-2.3	1	0	1
$0.1 \ \mu M$	1	0	0	1	0	0.316	-1.15	1	0	2
$0.1 \ \mu M$	1	0	0	1	0	1	0	1	0	25
$0.1 \ \mu M$	1	0	0	1	0	3.16	1.15	1	0	10
$0.1 \ \mu M$	1	0	0	1	0	10	2.3	1	0	46
0.1μ M	1	0	0	1	0	31.6	3.45	1	0	96
0.1μ M	1	0	0	1	0	100	4.61	1	0	122
0.1μ M		0	0	1	0	316	5.76	1	0	127
0.1 μ M	l	0	0	1	0	-	9.21	0	l	118
1.0μ M	1	0	0	0	1	0.01	-4.61	1	0	0
$1.0 \ \mu M$	1	0	0	0	1	0.032	-3.44	1	0	0
$1.0 \ \mu M$	1	0	0	0	1	0.1	-2.3	l	0	l
1.0μ M		0	0	0	1	0.316	-1.15	1	0	0
1.0μ M		0	0	0	1	1	0	1	0	1
1.0μ M		0	0	0	1	3.16	1.15	1	0	2
1.0μ M		0	0	0	1	10	2.3	1	0	6
1.0μ M		0	0	0	1	31.6	3.45	1	0	54
1.0μ M		0	0	0	1	100	4.61	1	0	120
1.0μ M		0	0	0	1	316	5.76	1	0	136
$1.0 \ \mu M$	1	0	0	0	1	-	-	0	1	163

表 5.14 2種類のダミー変数を持つ解析データ

非線型の式 (5.14) を、JMPの計算式エディターでコーディングした結果を 図 5.6 に 示す。なお、図中のパラメータの"初期値"を入力するウインドウには、最終的に得ら れたパラメータの推定値が代入されている。

🚸 JMP - y_ind î	
ファイル(E) 編集(E) テーブル(T) 行(R) 列(C) 実験計画(DOE)(D) 分析(A) グラフ(G) ツール(O) 表示(V)	ウィンドウ!!!! ヘルブ!!!!!
🗈 🗅 🚅 🗐 🎒 🏗 🗟 📗 🔖 ? 💠 🖻 💠 🖑 🎍 タ タ 🕇 📗 Drug_Gtop変量JMP	
🛃 y_ind^	
パラメータ パラメータの新大 + - ヘ beta1 = 1.2843; beta2_1 = 0.424 * + 少 放信 * * 少 沙信 * * 少 ジャ * * * 少 沙信 * * * 少 ジャ * * * * * * * シャ * * * * * * シャ * * * * * シャ * * * * * シャ * * * * シャ * シャ * シャ * シャ * <tr< th=""><th></th></tr<>	
$beta4_1 * z_1 + beta4_2 * z_2 + beta4_3 * z_3 + beta4_4 * z_4$	
$\begin{bmatrix} 1 + Exp \left[-\left[beta1 * \left[-\left[beta2_1 * z1 + beta2_2 * z2 + beta2_3 * z3 + beta2_4 * z4 \right] + \right. \right] \\ + \left[beta4_1 * z1 + beta4_2 * z2 + beta4_3 * z3 + beta4_4 * z4 \right] * d3 \end{bmatrix}$	[n,x]])]*d2
94H 169V	NUM //

図 5.6 インディケータ型ダミー変数を持つ JMP の非線形回帰式

表 5.15 に推定されたパラメータを示す。Beta2_1、...、beta2_4 がそれぞれのG薬の 濃度群での*EC50*の推定値になっている。推定結果は、表 5.13 で収縮率(%)で推定し たものとほぼ等しいことが確認できる。Beta4_1、...、beta4_4 が、それぞれのG薬の濃 度群での飽和点の位置*top*(β_4)の推定結果になっている。

表 5.15 非線型回帰のパラメータの推定値

解							
	SSE	DFE	MSE		RMSE		
1276.7521	123	35	36.478632	6.03	97543		
パラメータ		推定値	近似標準詞	呉差	下側信頼	酿限界	上側信頼限界
beta1	1.284	3204553	0.073456	693	1.1495	4827	1.44346942
beta2_1	0.424	0098739	0.09258	143	0.2314	2104	0.61494187
beta2_2	0.806	9533248	0.094	702	0.6107	7494	1.00180794
beta2_3	2.638	6221302	0.131596	696	2.3799	4064	2.89084097
beta2_4	3.966	4470978	0.1108	687	3.7496	5543	4.18383549
beta4_1	168.7	7751222	2.957390)59	162.8	4797	174.799763
beta4_2	166.2	0201185	3.076600	091	160.03	0432	172.485352
beta4_3	126.1	8190396	3.873792	215	118.63	1273	133.947537
beta4_4	159.6	9524062	4.98220	623	149.93	1781	169.84355

次ぎに効力比を求める。ダミー変数 z_1 を"切片" z_0 に置き換えることにより、ダ ミー変数 z_2 、 z_3 、および、 z_4 の回帰係数(パラメータ)が、蒸留水と各 G 薬との差 となり、antilog とすることにより、効力比が求まる。

図 5.7 効力比を出すための JMP の非線型回帰式

表 5.16 に推定されたパラメータを示す。Beta2_0 が蒸留水のEC50 の推定値、beta2_2、 beta2_3、beta2_4 がそれぞれの蒸留水とG薬の濃度群でのEC50 の差の推定値となってい る。Beta4_0 は、蒸留水の飽和点の位置topの推定値となって、beta4_2、beta4_3、beta4_4 が、蒸留水とそれぞれののG薬の濃度群での飽和点の位置topとの差の推定値になってい る。95%信頼区間から、beta4_2、および beta4_4 は、0 を含んでいるので、統計的には、 差がないことが分かる。Beta4_3 は、推定値が-42.59、95%信頼区間は、(-52.06,-33.05) と明らかに異なることが示されている。

表 5.16	収縮高	を考慮	した効力比	と飽和点の	の位置 top	の推定
解						
	SSE	DFE	MSE	RMSE		
1276.752	2112	35	36.478632	6.0397543		
パラメータ		推定値	近似標準詞	呉差 下側信	「頼限界	上側信頼限界
beta1	1.2843	168929	0.073458	373 1.14	954827	1.44346942
beta2_0	0.4240	108758	0.092580	053 0.23	142104	0.61494187

0.3829428171

2.2146174567

3.5424325527

168.7775489

-2.575505928

-42.59551501

-9.082347872

旧徳吉と本書したおも 1. 約五日上 小中国 の推定

0.1316101

0.15987521

0.14312366

2.95737744

4.13347132

4.74144063

5.6266203

0.65551037

2.53120255

3.82987897

174.799763

5.79274302

-33.051876

2.29040874

0.11060091

1.8937312

3.25637614

162.84797

-10.933136

-52.067271

-20.217822

表 5.17 収縮高を考慮した効力比

	ln(EC50)	$EC50(\mu M)$		ln (差)	倍	95%cl L	95%cl U	95%cl 倍
$\beta_{2,1}$	0.424	1.53	$\beta_{2,0}$	-				
$eta_{\scriptscriptstyle 2,2}$	0.807	2.24	$\beta_{\scriptscriptstyle 2,2}$	0.383	1.5	0.111	0.656	(1.1, 1.9)
$eta_{2,3}$	2.639	13.99	$\beta_{2,3}$	2.215	9.2	1.894	2.531	(6.6, 12.6)
$eta_{2,4}$	3.966	52.80	$\beta_{2,4}$	3.542	34.6	3.256	3.830	(26.0, 46.1)

表 5.18 収縮高を考慮した飽和点の位置 top

	ln(<i>EC50</i>)		ln (差)	95%cl L	95%cl U
$eta_{4,1}$	168.8	$eta_{4,0}$	-		
$eta_{4,2}$	166.2	$eta_{4,2}$	-2.6	-10.9	5.8
$eta_{4,3}$	126.2	$eta_{4,3}$	-42.6	-52.1	-33.1
$eta_{_{4,4}}$	159.7	$eta_{\scriptscriptstyle 4,4}$	-9.1	-20.2	2.3

beta2_2

beta2_3

beta2_4

beta4_0

beta4_2

beta4_3

beta4_4

х

図 5.8 収縮高を考慮したシグモイド曲線 ○:蒸留水、×:G薬 0.01 μM、△:G薬 0.01 μM、◇:G薬 0.01 μM、