最尤法によるポアソン回帰分析入門

文献・索引 目次

文献	463
文 献 索 引	467
索引	469
解析用ファイルー 覧	487

(加)

Web アクセスは全て 2020 年 4 月中旬

-あ-

- 1) アグレスティ著, 渡邉裕之, 菅波秀規, 吉田光弘, 角野修二, 寒水孝司, 松永信人 訳(2003), カテゴリカルデータ解析入門, 110-127, 169-179, サイエンティスト社.
- 2) Agresti A. (2019), An Introduction to Categorical Data Analyssis 3rd ed., Wiley.
- 3) Agresti A. (2013), Categorical Data Analyssis 3rd ed., 75-77, 552-555, Wiley.
- 4) アーミテージ, ベリー著, 椿美智子, 椿広計 訳(2001), 医学研究のための統計的方法, 原著第3版, 282-302, 377-389, サイエンティスト社.
- 5) Armitage P., Berry G. and Matthews J.N.S. (2002), Statistical Methods in Medical Reserch, 4th ed. Blakwell.
- 6) アルトマン著, 木船義久, 佐久間昭 訳(1999), 医学研究における実用統計学, 56-58, サイエンティスト社.
- 7) 岩崎学(2010), カウントデータの統計解析, 168-189, 朝倉書店.
- 8) 魚住龍史(2014), LS-Means 再考-GLMとPLM によるモデル推定後のプロセスー, SAS ユーザー総会論文集: 449-463.

https://www.sas.com/content/dam/SAS/ja jp/doc/event/sas-user-groups/sugj2014.pdf

9) 大和田章一(2010),線形モデルと非線形モデルの基本的な考え方-逆推定の解析,標準誤差と信頼限界-,第2期医薬安全研究会第7回定例会.

https://biostat.jp/archive_teireikai_2_download.php?id=19

10) 奥野忠一, 久米均, 芳賀敏郎, 吉沢正著(1981), 多変量解析法 改訂版: 49-64, 112-123, 123-128, 日科技連出版社.

ーカュー

- 11) Cameron A.C. and Trivedi P. K. (1998), Regression Analysis of Count Data, 76-80, Cambridge University Press.
- 12) 橘田久美子,福島慎二 (2013), 効力比の推定,じっくり勉強すれば身につく統計入門 第6回. https://scientist-press.com/wp/wp-content/uploads/2019/07/seminar6.pdf
- 13) 久保拓弥(2012), データ解析のための統計モデリング入門 一般化線形モデル・階層ベイズ モデル・MCMC, 39-65, 岩波書店.
- 14) 久保拓弥 訳, Murrell P. 著(2009), R グラフィックス -R で思いどおりのグラフを作図するために-, 6-6, 125-147, 共立出版.
- 15) Collett D. (2003), Modellng Binary Data 2nd Edition, 103-128, Chapman & Hall.

-さ-

- 16) 佐久間昭(1977), 薬効評価ー計画と解析-I, 285-295, 312-323, 東大出版会.
- 17) 佐久間昭 著, 五所正彦, 酒井弘憲, 佐藤泰憲, 竹内久朗 編(2017), 新版 薬効評価, 232-244, 255-276, 東大出版会.
- 18) SAS Institute (2016), SAS/STAT® 14.2 User's Guide, The GENMOD Procedure, 3164-65. http://support.sas.com/documentation/onlinedoc/stat/142/genmod.pdf
- 19) 下野嘉子(2010), R を用いた一般化線形モデル(回帰係数編):カウントデータを例に, 雑草研究, Vol.55(4):287-94. https://www.jstage.jst.go.jp/article/weed/55/4/55 4 287/ pdf
- 20) 杉本典子, 橘田久美子(2011), 共分散分析の基礎・医薬品開発における共分散分析の例, じっくり勉強すれば身につく統計入門 第4回.

https://scientist-press.com/wp/wp-content/uploads/2019/07/seminar4.pdf

- 21) 杉本典夫(), 統計学入門, 13.3 節 勾配比検定法. http://www.snap-tck.com/room04/c01/stat/stat13/stat1303.html
- 22) 杉本典夫(), 統計学入門, 13.2 節 平行線検定法.
 http://www.snap-tck.com/room04/c01/stat/stat13/stat1302.html
- 23) スネデカー, コクラン著, 畑村又好, 奥野忠一, 津村善郎 訳(1972), 統計的方法, 原著第6版, 213-216, 岩波書店.
- 24) Snedecor G.W., Cochran W.G. (1989), Statistical Methods, 8th ed., Iowa State Press.
- 25) 新村秀一(1983a), 行列表現による重回帰分析(1), オペレーションズ・リサーチ, vol.28: 439-445. http://orsj.or.jp/~archive/pdf/bul/Vol.28 09 439.pdf
- 26) 新村秀一(1983b), 行列表現による重回帰分析(2), オペレーションズ・リサーチ, vol.28: 506-628. http://www.orsj.or.jp/~archive/pdf/bul/Vol.28 10 506.pdf
- 27) 新村秀一(1983c), 重回帰分析における掃き出し演算子, オペレーションズ・リサーチ, vol.28: 565-669. http://orsj.or.jp/~archive/pdf/bul/Vol.28_11_565.pdf ーたー
- 28) 高波洋平, 舟尾暢男(2016), SAS Stadio によるやさしい統計データ分析, オーム社.
- 29) 高橋行雄, 大橋靖雄, 芳賀敏郎(1989), SAS による実験データの解析, 307-333, 東京大学 出版会.
- 30) 高橋行雄(2002), GENMOD プロシジャによる計数データの解析, SAS ユーザー総会論文集:193-202. https://www.sas.com/content/dam/SAS/ja_jp/doc/event/sas-user-groups/sugj2002.pdf
- 31) 高橋行雄(2004), 各種の効力比の統計を支える非線形最小 2 乗法入門, SAS ユーザー総会論文集: 3-22. https://www.sas.com/content/dam/SAS/ja_jp/doc/event/sas-user-groups/sugj2004.pdf

- 32) 高橋行雄(2006), SAS ユーザのための S-Plus 活用術.
 http://www.msi.co.jp/splus/usersCase/medical/pdf/06takappt.pdf
- 33) 高橋行雄(2011), JMP による各種分割実験入門 -変量効果モデルの基礎-, 続・高橋セミナー第1回. https://www.yukms.com/biostat/takahasi2/rec/001.htm
- 34) 高橋行雄(2013a), 回帰分析・再入門 ー統計ソフトが対応していない生物統計の各種の課題を Excel でサクサク解こうー, じっくり勉強すれば身につく統計入門 第7回. https://scientist-press.com/wp/wp-content/uploads/2019/07/seminar7.pdf
- 35) 高橋行雄(2013b), 応用回帰分析 1 各種の重み付き回帰における逆推定-, 続・高橋セミナー第 3 回. https://www.yukms.com/biostat/takahasi2/rec/003.htm
- 36) 高橋行雄(2015), 寿命試験データの統計解析, 続・高橋セミナー第 4 回. https://www.yukms.com/biostat/takahasi2/rec/004.htm
- 37) 高橋行雄(2017), 一般化線形モデルを Excel で極め活用するープロビット法・ロジット法・補 2 重対数法 , 続・高橋セミナー第 6 回.
 - http://www.yukms.com/biostat/takahasi2/rec/006.htm
- 38) 高橋行雄(2018), 正規分布を仮定した打ち切りデータを含む回帰分析入門, 続・高橋セミナー第7回. https://www.yukms.com/biostat/takahasi2/rec/007.htm
- 39) 高橋行雄(2019a), 最尤法による探索的ポアソン回帰, 続・高橋セミナー第8回. https://www.yukms.com/biostat/takahasi2/rec/008.htm
- 40) 高橋行雄(2019b), 投与前値がある場合の解析のレビュー, 第2期 医薬安全性研究会, 第24 回定例会. https://biostat.jp/archive_teireikai2_download.php?id=164
- 41) 竹内啓ら(1989), 統計学辞典, 1135, 東洋経済.
- 42) 竹内啓(1979), 数理統計学, 308-317, 東洋経済.
- 43) 東京大学教養学部統計学教室編(1972), 自然科学の統計学, 31-40, 東大出版会.
- 44) ドブソン 著, 田中豊, 森川義彦, 山中竹春, 富田誠 訳(2008), 一般化線形モデル入門, 原著 第 2 版, 60-63, 76-79, 168-189, 共立出版.
- 45) Dobson A.J. and Barnett A.G. (2018), An Introduction to Generalized Linear Models 4th ed., CRC Press.
- 46) 富山茂巳, 杉本忠則(2004), 複数の物質の変異原性の強さの比較, 医薬安全性研究会会報, Vol.49:43-53. https://biostat.jp/archive kaihou/ANZ KIH 49 2004 01.pdf.
- 47) ドレーパ, スミス著, 中村慶一 訳(1968), 応用回帰分析, 47-87, 216-302, 森北出版.
- 48) Draper N.R. and Smith H. (1998), Applied Regression Analysis,3rd.ed. A Wiley-Interscience Publication.

ーなー

- 49) 中西展大(2010), 非線形回帰を用いた逆推定の基礎, じっくり勉強すれば身につく統計 入門 第 12 回. https://scientist-press.com/tokei-nyumon/
- 50) 野沢昌弘(1992), テコ比とハット行列, 応用統計学, Vol. 21, N03: 165-166.
 https://www.jstage.jst.go.jp/article/jappstat1971/21/3/21_3_165/_pdf/-char/jaーはー
- 51) 芳賀敏郎(2004), 最小 2 乗法, 最尤法, 線形モデル, 非線形モデル.

 http://www.yukms.com/biostat/haga/download/archive/likelihood/Likelihood.pdf
- 52) 芳賀敏郎(2009), 医薬品開発のための統計解析 第2部 実験計画法 初版, 72-81, サイエンティスト社.
- 53) 芳賀敏郎(2010), 医薬品開発のための統計解析 第3部 非線形モデル, 13-17, サイエンティスト社.
- 54) 原田淳(2017), 平行線検定を利用した薬物の効力比較, 日薬理誌, Vol 150:16-22. https://www.jstage.jst.go.jp/article/fpj/150/1/150_16/_pdf/-char/ja
- 55) 原田淳, 吉池通晴(2017), 平行線検定(直線及びシグモイド曲線)による効力比較, 第2期 医薬安全性研究会:第21回定例会.
 - https://biostat.jp/archive_teireikai_2_download.php?id=140 Finny D.J. (1971), Probit Analisys 3rd ed.:50-80, Cambrige University Press.
- 57) Finny D.J.(1978), Statistical Method in Biological Assay 3rd ed., 39-68, Charles Griffin. ーまー
- 58) McCullagh P. and Nelder J.A. (1989), Generalized Linear Models: 204-208, Chapman Hall.
- 59) 南美穂子, Lennert-Cody C.E.(2013), ゼロの多いデータの解析: 負の2 項回帰モデルによる 傾向の過大推定, 統計数理, 第61巻第2号: 71-87. https://www.ism.ac.jp/editsec/toukei/pdf/61-2-271.pdf
- 60) 蓑谷千凰彦(2010), 統計分布ハンドブック, 608-610, 朝倉書店.
- 61) 蓑谷千凰彦(2013), 一般化線形モデルと生存時間分析, 214-224, 朝倉書店.
- 62) 守屋和幸, 広岡博之(2018), R パッケージを用いた最小 2 乗分散分析と最小 2 乗平均値の 算出, 日畜会報 Vol.89:1-6. https://www.jstage.jst.go.jp/article/chikusan/89/1/89_1/.

-や-

56)

- 63) 吉村功, 大橋靖雄 責任編集(1992), 毒性試験データの統計解析, 147-66, 地人書館. -6-
- 64) Little R.C., Stroup W.W. and Freund R.j. (2020), SAS for Linear Models 4th ed.: 163-227, SAS Institute.
- 65) 臨床評価研究会(ACE) 基礎解析分科会(2017), 新版 実用 SAS 生物統計ハンドブック, サイエンティスト社. http://www.ace-jp.org/book/favor.html

文献索引

あ	アグレスティ著, 渡邉・菅波・吉田・角野・寒水・松永訳(2003)-カテゴリカルデー解析入門 56, 221, 243, 379	9, 457					
	Agresti (2013) - Categorical Data Analysis 3rd ed. 5, 99, 213, 258	3, 393					
	アーミテジ・ベリー著, 椿・椿共訳(2001) - 医学研究のための統計的方法 46,393	3, 324					
	アルトマン著,木船・佐久間訳(1999) - 医学研究における実用統計学	27, 95					
	岩崎(2010) - カウントデータの統計解析	217					
	魚住(2014) - LS-Means再考ーGLMとPLMによるモデル推定後のプロセスー	455					
	大和田(2010) - 線形モデルと非線形モデルの基本的な考え方ー逆推定の解析,標準誤差と信頼限界ー	174					
	奥野·久米·芳賀·吉沢著(1981) - 多変量解析法 改訂版 390, 423, 400), 440					
カュ	Cameron and Trivedi (1998) - Regression Analysis of Count Data 54, 218	3, 221					
	橘田・福島(2013) - 効力比の推定	278					
	Murrell著, 久保訳(2009) - Rグラフィックス	257					
	久保(2012) -データ解析のための統計モデリング入門,一般化線形モデル・階層ベイズモデル・MCMC 1,4	10, 84					
	久保訳・Murrell著(2009) - R グラフィック - Rで思い通りのグラフを作図するために- 295	5, 349					
	Collett (2003) - Modeling Binary Data 2nd. ed.	163					
さ	佐久間(1977) - 薬効評価 -計画と解析- I 269	9, 277					
	佐久間著, 五所·酒井·佐藤·竹内編(2017) - 新版 薬効評価 269	9, 277					
	SAS Institute (2016) - SAS/STAT® 14.2 User's Guide, The GENMOD Procedure	377					
	下野(2010) - Rを用いた一般化線形モデル(回帰係数編): カウントデータを例に	293					
	新村(1983a) - 行列表現による重回帰分析(1)	400					
	新村(1983b) - 行列表現による重回帰分析(2)	400					
	新村(1983c) - 重回帰分析における掃き出し演算子	400					
	杉本・橘田(2011) - 共分散分析の基礎・医薬品開発における共分散分析の例	432					
	杉本() - 統計学入門, 13.2節 平行線定法	283					
	- 統計学入門, 13.3節 勾配比検定法	276					
	スネデカー・コクラン著, 畑村・奥野・津村訳(1972) - 統計的方法, 第6版 13, 63, 393	3, 424					
た	高波・舟尾(2016) - SAS Stadioによるやさしい統計データ分析	354					
	高橋・大橋・芳賀(1989) - SASによる実験データの解析 4, 421	1, 455					
	高橋(2002) - GENMODプロシジャによる計数データの解析	354					
	高橋(2004) - 各種の効力比の統計を支える非線形最小2乗法入門						
	高橋(2006) - SASユーザのためのS-Plus活用術	257					
	高橋(2011) - JMPによる各種分割実験入門 - 変量効果モデルの基礎 -	3					
	高橋(2013a) - 応用回帰分析I -各種の重み付き回帰における逆推定-	163					
	高橋(2013b) - 回帰分析・再入門 - 統計ソフトが対応していない生物統計の各種の課題をExcelでサクサク解こう	163					

た	高橋(2015) - 寿命試験データの統計解析		70
	高橋(2017) - 一般化線形モデルをExcelで極め活用する一プロビット法・ロジット法・補2重対数法一	2, 70, 17	76, 201
	高橋(2018) - 正規分布を仮定した打ち切りデータを含む回帰分析入門		70
	高橋(2019a) - 最尤法による探索的ポアソン回帰	2, 22	24, 243
	高橋(2019b) - 投与前値がある場合の解析のレビュー		425
	竹内(1979) - 数理統計学		163
	竹内ら(1989) - 統計学辞典		421
	東京大学教養学部統計学教室編(1992) - 自然科学の統計学	10	50, 407
	ドブソン著, 田中・森川・山中・富田 訳(2008) - 一般化線形モデル入門, 原著 第2版	2, 16,	23, 49,
	78, 88, 125, 136, 180, 186,	195, 361, 41	10, 415
	富山・杉本(2004) - 細菌を用いた用量反応試験データ	36, 11	19, 284
	ドレーパ・スミス著,中村訳(1968) - 応用回帰分析	135, 146, 17	74, 398
	Draper and Smith (1998) - Applied Regrettion Anarysis 3rd ed.		135
な	中西(2016) - 非線形最小2乗法の基本的な考え方		174
	野沢昌弘(1992) - テコ比とハット行列		366
は	芳賀(2004) - 最小2乗法, 最尤法, 線形モデル, 非線形モデル		3
	芳賀(2009) - 医薬品開発のための統計解析 第2部 実験計画法	40	01, 432
	芳賀(2010) - 医薬品開発のための統計学, 第3部 非線形モデル	10	63, 174
	原田(2017) - 平行線検定を利用した薬物の効力比較		278
	原田・吉池(2017) - 平行線検定(直線及びシグモイド曲線)による効力比較		278
	Finney (1971) - Probit Analisis 3rd ed.		201
	Finney (1978) - Statistical Metod in Biological Assay 3rd ed.		201
ま	McCullagh and Nelder(1989) - Generalized Linear Models 2nded		323
	南・Cheridy(2013) - ゼロの多いデータの解析: 負の2項回帰モデルによる傾向の過大推定	宦	314
	蓑谷(2010) - 統計分布ハンドブック 増補版		212
	蓑谷(2013) - 一般線形モデルと生存時間解析		258
	守屋・広岡(2018) - Rパッケージを用いた最小2乗分散分析と最小2乗平均値の算出	6, 42	22, 449
Þ	吉村・大橋 責任編集(1992) - 毒性試験データの統計解析	32, 10	09, 237
5	Little (2002) - SAS for Linear Medels		455
	臨床評価研究会(ACE)基礎解析分科会(2017) - 新版 実用SAS生物統計ハンドブック	29	93, 354

索引

J.	フルコー カー 10月17年	206	<u>.</u>	2年ハナ			100
Đ	アイリスデータ - 相関行列	386	あ	- 2項分布			100
	- バーシカラー種	386		- 二項分布			26
	赤池の情報量量基準 - AICc	371		- ポアソン回帰			16
	- 修正済み	371		- 名義尺度			249
	アグレスティ(2003) - カブトガニ 221, 228,	457		一般線形モデル - 重み			188
	- カブトガニの事例	379		一般用語ではない - 予測プロファ	イル		448
	- カブトガニ	56		ε - いぷしろん			136
	Agresti (2013) - 殺人被害者	258		いぷしろん $-ε$			136
	- 負の2項分布	213		岩崎(2010) - 負の2項分布			217
	- 分割表	99		Indicator型 - 標示型			117
	- 尤度比検定	99	う	魚住(2014) - LS-Means再考			455
	頭打ち現象 - 高年齢層	206		WolframAlpha - 数学ソフト			77
	at オプション - Lsmeansステートメント	439		· 偏微分			77
	アドイン - ソルバー	69		浮き彫り - 特異的な変動			347
	Avarage() 関数 - Excel	387		打ち切りデータ - 高橋(2018)			
	Avarage()			- ニュートン・ラフソン法			70
		424					70
	アーミテージら(2001) - 退役軍人の癌の発生	46	. 5.	運行数 n _i - オフセット			325
	- 偏差平方和ベース	393	え	AICc - 赤池の情報量量基準			371
	R - glm() 関数	40		- 分布間の比較			267
	R - Ismeansパッケージ	449		- ゼロ過剰ポアソン回帰			261
	R and SAS - 臨床評価研究会(ACE)(2017)	354		- 分布の同定			258
	Rグラフィックス - 久保(2009)	257		- ポアソン回帰			260
	- Trellis(格子)グラフ	295		Ames試験 - コロニー数			109
	Rのglm.nb - 下野(2010)	318		- ネズミチフス菌			32
	R言語 - optim() 最適化関数	68		- 復帰突然変異試験			32
	- 最初の水準を基準	455		- 変異コロニー数		36,	284
	- デザイン変数	455		- 吉村ら(1992)		32,	109
	- Trellis(格子)グラフ	349		Excel - Average() 関数			387
	Rパッケージ - 守屋ら(2018)	449		- Mdetarm() 関数			147
	アルトマン(1999) - 新月と満月	27		- Minverse() 関数	19,	152,	430
	- 犯罪件数	95		- Mmult() 関数 18,	138,	152,	387
11	医院への通院回数 - 過分散	54		- 折れ線グラフ	312,	337,	350
	- Cameron and Trivedi (1998)	54		- Chisq.dist() 関数			14
	幾つかの集団 - 必然的に過分散	220		- Chisq.dist.RT() 関数			132
	生育環境別 - 種子数	294		- 回帰パラメータ			145
	イタリック - 書式	136		- 回帰分析			271
	(1,-1) - 対比型	113		- Gamma() 関数			212
	10,000人あたり - オフセット	198		- Gammaln() 関数		216,	313
	1万人比 - オフセット 92,	199		- ガンマ・ポアソン回帰			314
	位置パラメータ - ガンマ・ポアソン分布	213		- ガンマ・ポアソン確率			315
	- 負の2項分布	213		- ガンマ・ポアソン分布			264
	- 平均μ	213		- 共分散分析			442
	- ₹ユ ー μ	66		- 行列計算			138
	位置パラメータμ - ガンマ・ポアソン回帰	263		- グラフ作成の手順			161
	- 負の2項分布	313		- 計算不能			106
	一変量の分布 - JMP	33		- 交互作用	252.	345,	
		320		- Covariance.S() 関数	- ,	,	389
	- Residual deviance	320		- Correl() 関数			389
	- 残差デビアンス	321		- Combin() 関数			208
	- デビアンス	359		36	140	210,	
	一般化線形モデル - JMP	380		- SumSq() 関数		155,	
	- 診断プロット	380		- 散布図の活用のヒント	,	,	414
	- デザイン行列	18		- 重回帰			394
	- 列の保存	380		- Sqrt() 関数		153	387
	- 交互作用	250		- 絶対参照		,	8
		100		- セル同士の積「*」			181
	- 対比型のデザイン行列	249		- ゼロ過剰ガンマ・ポアソン回帰	·		266
	V1507755 / / 14 11/1	<u>~ 17</u>	ı				200

		·			
え	- ゼロ過剰ポアソン回帰	261	え - 方言		421
	- 相対参照	8	- 予測プロファイル		438
	- ソルバー	43, 50, 68	Lsmeansステートメント - at オプショ	ョン	439
	- 対数ガンマ関数	216, 313	Lsmeansの推定値 - デザイン変数		451
	- T.dist.2T() 関数	153	lsmeansパッケージ - R		449
	- デザイン行列	329	- 最小2乗平均		452
	- データの選択	414	LS-Means再考 - 魚住(2014)		455
	- データ系列の書式	414	お 応答局面法 - JMP		441
	- Transpose() 関数	20, 139, 152	- 等高線プロファイル		441
	11	387, 430	大和田(2010) - 逆推定の解析		174
	- 2次式	402	奥野ら(1981) - 重回帰分析		390
	- 2次式のグラフ	404	- 層別因子		423
	- NegBinom.dist() 関数	209, 313	- 電気特性		440
		387	- 偏回帰係数		390
	- Var.S() 関数			202	
	- Binom.dist() 関数	12	- 偏差平方和ベース	393,	
	- 反復計算	21, 86	- 魅力的な事例		422
	- 反復重み付き回帰	19	オフセット - 10,000人あたり		198
	- 標準残差	367	- 1万人比	92,	199
	- 負の二項分布	264	- 運行数 n _i		325
	- 分析ツールの回帰分析	21, 86	- 重み		196
	- 平滑化	67	- 回帰式		90
	- Poisson.dist() 関数	8, 63, 411	- 基準からのズレ		196
	- ポアソン回帰	260, 314	- 共変量		309
	- Mmult() 関数	430	- JMP		24
	- 尤度比検定	29	- 10万人比		125
	- 尤度比のカイ2乗値	96	- 推定		198
	- 予測プロファイル	247, 303, 337	- 切片	90.	326
		345, 421, 432, 459	- ソルバー	, ,	351
	- LinEst() 関数	159, 401	- 対数		47
Fv	cel 回帰分析 - 高橋(2013b		- 対数リンク	88, 125,	
LA	- 標準化残差	367	- 土壌体積中	00, 123,	294
Ev	celソルバー - ロジスティック		- ドブソン (2008)		195
	celの回帰分析 - 現実的な	·	- 花数	202	
				293,	
	celの行列関数 - 回帰分析	361	- 反復計算		197
	celの散布図 - 予測プロファ		- 負の2項回帰 - 数0.8.45円		313
	imeteステートメント - GLM	7	- 部分母集団	05 105	125
S-F	PLUS - 格子グラフ	257	- ポアソン回帰	25, 195,	
	- 高橋(2006)	257	- 補正値		196
_	- Trellis(格子)グラフ	257, 295, 348	- 面積の中		294
	- 回帰の平方和	155	オフセット offset - GENMOD		355
	- 平均からの偏差	154	optim() 関数 - 最適化		68
	プス - グラフ・ビルダー	257	optim() 最適化関数 - R言語		68
Хβ	- 積	137	オプション - 切片を含めない		137
	- 積和	137	重み - 一般線形モデル		188
(-H	/)-1 - 負の逆行列	75	- オフセット		196
	〜ッセ - 2階の偏微分行列	70	- 行列計算		181
$F \leq$	分布の上側確率 - F.dist.R'	Γ() 関数 156	- 対角要素		411
	letarm() 関数 ‐Excel	147	- 対数リンク		411
	nverse() 関数 - Excel	430, 19, 152	重みなしの回帰 - 初期パラメータ		180
	- 逆行列	148, 152	重みの行列 - デザイン行列		178
Mn		18, 138, 152, 387	重み行列 - 対角要素		374
1411	- 行列の積	140	・ ハット行列		374
I	- 尤度	64	重み付き回帰 - 正規方程式		177
	- 九皮 L - 対数尤度	64	- 反復		182
			- <u>火</u> 復 - ブレ		
LSI	means - 最初の水準を基準				175
	- 最小2乗平均	329, 421, 437	- 厄介な問題		175
	- 総平均	438	重み付き平方和 - 偏微分	212 555	177
	- ポアソン回帰	457	折れ線グラフ - Excel	312, 337,	350

お	- 95%信頼区間	341	か 外部ファイル - 予測値 349
	- 交互作用プロファイル	300	カウント・データ - 損傷数 323
)5, 354	カウントデータ - 下野(2010) 293
カン	Chisq.dist() 関数 - Excel	14	確率楕円 - 散布図 41
	Chisq.dist.RT() 関数 - Excel	132	確率関数 - ゼロ過剰ガンマ・ポアソン分布 225
	カイ2乗 - ピアソン	314	- ゼロ過剰ポアソン分布 221, 225
	カイ2乗検定 - 適合度	240	- ポアソン分布 8
	カイ2乗検定統計量 - Pearson	96	各種の残差 - SAS/GENMOD 377
	カイ2乗値 - デビアンス	370	各種の残差統計量 - SAS/GENMOD 378
	- Pearson	370	各種の推定 - 負の2項回帰 322
	回帰式 - オフセット	90	確率 - 尤度 64
	回帰分析 - 層別散布図	255	確率P - 尤度L 64
	- 正規方程式	143	確率関数 - 尤度関数 64
	解 - 正規方程式	143	確率楕円 - 50%程度 441
	解釈 - パラメータの推定値	330	- 層別確率楕円 249
	回帰の95%信頼区間 - ポアソン回帰	286	確率分布 - ガンマ・ポアソン回帰 231
	回帰の平方和 - S_R	155	- ゼロ過剰ガンマ・ポアソン回帰 235
	- 誤差平方和	362	角括弧 [・・・] - デザイン行列X 136
	- 差分	369	下限・上限 - ロジスティック曲線 94
	回帰パラメータ - Excel	145	重ね合わせプロット - JMP 84
	- 共分散	150	- JMPファイル 192
	- 行列計算	147	可視化 - 共変量 447
	- デザイン行列	147	- 最小2乗平均 445
	- 分散	150	過剰モデル - ベストモデル 133
	- 平方和	361	傾きの差 - 95%信頼区間 272
	- ロジット変換	100	傾きの比 - 95%信頼区間 273
	- ワルド検定	184	- 効力比 ρ 273
	回帰パラメータの推定 - 偏差平方和ベース		傾きの比較 - 共通の切片 269
	回帰パラメータの分散 - 偏差平方ベース	150	傾きを共通 - 平行線(0,1)型 121
	回帰曲線 - 95%信頼区間	192	括弧 (・・・) - デザイン行列X 136
	回帰式 - 簡便な式	145	カブトガニ - アグレスティ(2003) 56, 221
	- 重心	173	228, 243, 457
	- 等高線図	396	- サテライト数 56, 243
	回帰式の表記 - デザイン行列	136	- 高橋(2019) 243
	回帰直線 - 95%信頼区間	157	- 探索的解析 243
	- 2本	119	カブトガニの事例 - アグレスティ(2003) 379
	- 別々	124	- 4種の残差の比較 379
	回帰直線からのズレ - 誤差平方和	154	過分散 - 医院への通院回数 54
	回帰直線の差 - Y軸方向の差	278	- 調整 58
	回帰分析 - Excel	271	- ポアソン分布 7
	- Excelの行列関数	361	過分散 scale= pearson - GENMODプロシジ 355
	- 外挿	419	過分散パラメータ - JMP 241
	- ガラスの天井	149	過分散 - コロニー数 238
	- 共変量	383	- 尺度 307
	- 行列関数	361	- 調整 310
	- JMP	170	- 通院回数 218
	- ゼロ過剰ガンマ・ポアソン分布	255	- ピアソンのカイ2乗 315
	- 層別因子を含む	423	- 必然的に過分散 220
	- 通常の	361	- 負の2項分布 60
	- デザイン行列	152	- 分散/平均 210, 324
	- データ分析ツール	137	- 分散/平均の比 296
	- 偏差平方和ベース	149	- ポアソン回帰 355
	ー LinEst() 関数	159	- ポアソン分布 207
	- 炉A4を基準	446	- 無視 309
	回帰平方和+誤差平方和 - 平方和の分解		過分散なし - 交互作用 342
	回収液の濃度の差 - 予測プロファイル	436	過分散など - 父五1F/A 342 過分散の調整 - ポアソン回帰 259
	階乗 - ガンマ関数	211	過分散の調整 - ホテラン固端 239 過分散パラメータ - 変化 216
	外挿 - 回帰分析	419	過分散ペンメータ - 変化 216 過分散を調整 - ポアソン回帰 293
	70年 四种为例	419	週月取む脚走 - かノノイ凹市 293

カゝ	過分散を反映 - 主効果モデル	301	き 基準からのズレ - オフセット			196
	過分散σ - ガンマ・ポアソン分布	213	基準との差 - 標示型			117
	- 形状パラメータ	213	規準化データ - 重回帰			400
	Cameron and Trivedi (1998) - 医院への通院回		- 新村(1983a,b)			400
	- ゼロ過剰	221	期待値 - ポアソン分布			10
	- 通院回数	218	(非喫煙・喫煙) - 2群間比較			126
	貨物船 - McCullagh and Nelder(1989)	323	喫煙者 - 10万人比での95%信頼区			419
	貨物船の前方部の損傷数 - ロイド	323				125
	船舶の前方部 - 損傷数	323	- ドブソン(2008)			415
	ガラスの天井 - 回帰分析	149	喫煙習慣と年齢 - 交互作用			131
	- 伝統的な回帰分析	146	橘田・福島(2013) - 効力比の推定			278
	- 伝統的な方法	159	逆推定 - ソルバー			168
	- 偏差平方和ベース	149	- 高橋(2013a)			163
	冠動脈心疾患 - ドブソン(2008)	23	逆ロジット - ロジット変換			93
	- 喫煙習慣	125	逆行列 - Minverse() 関数	14	ŀ8,	152
	- 死亡者数	88	逆行列の定義 - 単位行列			147
	- 死亡率	195	逆推定 - Collett(2003)			163
	- ドブソン (2008)	49, 88	- JMP			170
		186, 410	- 正確な95%信頼区間			165
	完全モデル - 誤差平方和	368	- 竹内(1979)			163
	- 最大モデル	368	- 2 次式の解の公式			166
	- 縮小モデル	126	- 芳賀(2010)			163
	- モデル	43	- 非線形回帰			173
	- 尤度比検定	98	- モデルのあてはめ			173
	では、		逆推定の解析 - 大和田(2010)			
		145				174
	簡便公式 - 分割表	99	逆推定值 - 95%信頼区間			163
	灌流 - Superfusion法	277	逆標準正規分布 - 標準正規分布			201
	Gamma Poisson Probability() - JMP	316	95%信頼区間 - 共分散行列			247
	Gamma() 関数 - Excel	212	- 2変数			247
	Gammaln() 関数 - 対数ガンマ関数	313	- ポアソン回帰			22
	- Excel	216	- 折れ線グラフ			341
	癌の発生 - 退役軍人	46	- 回帰直線			157
	ガンマ・ポアソン回帰 - 位置パラメータμ	263	- 傾きの差			272
	- Excel	314	- 傾きの比			273
	- 確率分布	231	- 逆推定値			163
	- 形状パラメータσ	263	- 行列計算機能			162
	- 甲羅の幅	228	- 交互作用			433
	- 推定値	230	- 個別データ			158
	- 対数尤度	229	- 個別の95%信頼区間			44
	- 負の2項分布	263	- 差の推定値			435
	- ポアソン回帰	228	- 事後的に			410
	ガンマ・ポアソン確率 - Excel	315	- 10万人比			417
	ガンマ・ポアソン分布 - 位置パラメータ	213	- 推定値			403
	- 過分散σ	213	- 対数			412
	- 形状の比較	216		91, 41	Λ	
	- コロニー数	238	- デルタ法	′1, + 1	υ,	164
			- 伝統的な方法			
	- GENMOD **ただかわよるなの意味	265				159
	- 数学的な解説	217	- 2次式			159
	- ソルバー	218	- 2次回帰			194
	- 適合度のカイ2乗	241	- 2次曲線			401
	- パラメータ推定	214	- 2次形式			248
	- 負の2項分布 54, 60, 2	-	- 2次多項式			408
	- 分散	241	- 分散			340
	ガンマPoisson分布 - JMP	214	- 予測プロファイル	34	Ю,	397
	ガンマ関数 - 階乗	211	95%信頼区間の計算式 - JMP			171
	- 組合せ数	313	共分散行列 - SAS			37
	- パラメータ推定	212	- 信頼区間			21
	- 負の2項分布	211	- パラメータ			21

# 共の保分析・投与前値 # 上面の明ナ・侵寒の比較 # 上面の明ナ・侵寒の比較 # 上面の明ナ・侵寒の比較 # 上面の明ナ・日寒の上較 # 上面の明ナ・日寒の上較 # 上面の明ナ・日寒の上較 # 上面の明ナ・日寒の上較 # 上面の明ナ・日寒の上で # 上面の明か # 上面のい # 上						
- 別々の切け - 仮きの比較 269	き	共分散分析 - 投与前值	425	き	- 重み	181
- 別々の切け - 仮きの比較		共通の傾き - 2本の回帰直線	277		- 回帰パラメータ	147
共通の切け - 4(a o) L t		- 別々の切片	278		- 新村(1983a.b)	
# 中						
# 権定値						
- 2-20 の行列						
東分散行列 - 95%信頼区間 247 - 支及作用 429 - covbオブション 307 - 上(P) 151 - 上(P) 151 - 上(P) 151 - 山田 子がり 421 - 車回帰分析 421 - 相間行列 386 - 水角要素 363 - 多変量データ 383, 386 - デザイイ列X 161 - デルイ分財X 161 - デルイ分財X 161 - デルイラル 161 - デルイラル 161 - デルイラル 161 - デルイラル 161 - デルタを 274 - 2次形式 191, 274, 339 22変数 247 - バラメータ 70, 156, 298 - 分析ワール 383 - ウがリール 384 - ツルマンドを計量 160 サンサ酸方面 184 サンサ酸方面 184 サンサ酸方面 184 サンサンドがフルー 255, 454 サンサンドがアルー 252 - 変互作用 423 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
- 共分散分析 383						
- 交互作用 429 corbオブション 307 2ℓ(f²) 151 - MP 338						
- covbオブション 307 - 2 (分) 151 - NMP 338 - 直回帰分析 421 - 相関行列 386 - 対角要素 363 - 多変量データ 383, 386 - デザイン行列X 161 - デルタ法 274 - 2次形式 191, 274, 339 - 2変数 247 - 2次形式 191, 274, 339 - 2変数 247 - パラメータ 70, 156, 298 - ペッセ行列X 184 - ワルド溶計量 106 - サ分散分析 - アージアイグ 184 - ワルド溶計量 106 - サ分散分析 - アージアイグ 255, 257, 347 - 184 - フルド溶計量 106 - サ分散分析 - アージアイグ 259 - 250 - 25		- 共分散分析	383			280, 289
- <i>X(β'</i>) 151		- 交互作用	429		· · · · · · · · · · · · · · · · · · ·	273, 289
- <i>X(β'</i>) 151		- covbオプション	307		吟味 - 交互作用	118
- J.N.P				<		
- 垂回福分析 421				`		
- 相関行列 386						
- 対角要素 363 - 多変量データ 383, 386 - 子ッチングラブ 1 161 - デルク法 274 - デルク法 274 - デルク法 191, 274, 339 - 2変数 247 - バラメータ 70, 156, 298 311, 337, 363, 430 - 分析ツール 384 - ワルド統計量 106 - 理条数 255, 454 - 担身を持つが 1 255, 454 - 担身を持つが 2 256, 454 - 世身を持つが 2 256, 454 - 世身を						
・多変量データ 383, 386 人保訳(2009) - Trellis/rel図 257, 295 ・デザイン行列X 161 274 組み合わせ・層別 239 ・2次形式 191, 274, 339 組合せ数・ガンマ関数 313 313 328 おいたアラメータ 257 257 ・グラインレルタ 311, 337, 363, 430 400 ・基外平滑値 348 ・上東の平滑値 348 ・クがワール 383 - 原別股布図 255, 454 ・主効果予測値 348 ・クルド統計量 106 - 非条子滑値 348 ・上東の平滑値 255, 454 ・クッセ行列 184 - アドカナーター 160 ・投票解析的 255 454 ・分散行列に(ア)・ バラメータ 160 ・提票解析的 255 454 ・指係下月比 348 ・中溶線 296 グラク作成の手順・Excel 412 ・提展の影響・電 296 グラク作成の手順・Excel 161 株状のメラム・カナー・ボアンン分布 161 株状のメラム・カナー・ボアンンが着 449 ・・大・大・大・大・大・大・ア・ボアンンの構 161 未状がのメーター・通り数 214 ・・大・大・大・大・ボアン・ブン・ボアンン回帰 252 ・大・大・大・大・ア・ボアンン回帰 253 ・大・大・大・大・大・大・大・ア・ア・オアン・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア						
- デザイン行列X 161 274 339 275 257, 295 - デルク法 274 276 - アルク法 191, 274, 339 - 2変数 247 - パラメータ 70, 156, 298 - パラメータ 70, 156, 298 - パラメータ 70, 156, 298 - パガツール 311, 337, 363, 430 - 上効果予測値 348 - かがツール 388 - ニ効果予測値 255, 454 - 理部級 296 - 提供予削ご(タ) - パラメータ 184 - アルグボ計量 106 - 提供予削の計算 - パラメータ 160 - 提分散行列の計算 - パラメータ 160 - 提分散行列の計算 - パラメータ 160 - 提分散行列の計算 - パラメータ 160 - 提分散分析 - アーミティジら(2001) 424 - Excel 442 - 共分散行列 383 - 労扱での声順 - Excel 161 - 操返し不揃い - 2因子の共分散分析 449 glm()関数 - R 40 - 状状の上軟 - ガンマ・ボアソン分布 216 - 形状パラメータ - 過分散の 213 - 強の至項分布 213 - 強の至項分布 213 - 大変量が2変量 440 - ボル・コクラン(1972) 424 - ボを本・椿田(2011) 432 - ボラベータ 383 - デ育(2009) 432 - ボラメータ 383 - 非算不能 - Excel 106 - ボラメータ 383 - 計算不能 - Excel 106 - ボをな 447 - 直帰分析 383 - 東変量が2変量 - オフセット 309 - 重開分析 383 - 東変量が2変量 - 北クセット 309 - 重原分析 383 - 東変量が2変量 - 北クセット 309 - 重複化 447 - 花数 294 - 複量率 - ボアン・分布 106 - 電影中集団 294 - 大変量の意味での - ま分散分析 448 - 部分母集団 294 - 東変量が2変量 - 北ク散分析 163 - 現実しな対応・ Excel 106 - 「デカー・一般化線形モデル 250 - 医な自りに関子が 136 - 一般化線形モデル 250 - 医な自りに関子が 136 - アクラ・シーLUS 257 - アクラ・シーLUS 257 - アクラ・シーLUS 257 - アクラ・シーDの内側 - 一致 139 - アクラが合称 138 - アクラがの内側 - 一致 139 - アクラが分析 425 - 原発性 252, 345, 429 - 通分散の解消 342 - アクラが分析 425 - 原発・関係・デアン・分布 106 - アクラのの内側 - 一致 139 - アクラがの内側 - 34 - アクラが分析 423 - アクラが分析 423 - アクラがの方列 423 - アクラが分析 425 - アクラがの方析 142 - アクラが分析 142 - アクラがのが消 342 - アクラが分析 142 - アクラが分析 142 - アクラがの方針 126						
- デルタ法 191、274、339 229 247 2次形式 191、274、339 22変数 247 グラフ・ビルター - Sアラス 257 257 317 311, 337, 363, 430 318 - 分析ツール 311, 337, 363, 430 388 - 小ッセ行列 184 - ワルド統計量 106 共分散行列にβ 7 ・ アラメータ 164 共分散行列の計算 - パラメータ 160 共分散分析列の計算 - パラメータ 160 共分散分析列の計算 - パラメータ 160 共分散分析列の計算 - パラメータ 160 共分散分析列 255 454 42 256 256 257 347 348 255 454 256 256 257 347 348 255 349 255 345 349 255 349						
- 2次形式 191, 274, 339 22変数 247 247 275 298 2975 298 2975 298 311, 337, 363, 430 318 298 294 247 311, 337, 363, 430 388 294 297 295, 255, 257, 347 318 295, 298 295, 255, 257, 347 318 295, 298 295, 255, 257, 347 348 298 298 298, 298 298, 298 299, 295, 255, 257, 347 348 298, 298 299, 295, 255, 257, 347 348 298, 298, 299, 299, 295, 255, 257, 347 348 299, 299, 295, 255, 257, 347 348 299, 295, 255, 257, 347 348 299, 295, 255, 257, 347 348 299, 295, 255, 257, 347 348 299, 295, 255, 257, 347 348 299, 295, 255, 257, 347 348 299, 295, 255, 257, 347 348 299, 295, 255, 257, 347 348 299, 295, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 295, 297, 347 348 298, 298, 299, 295, 295, 295, 297, 347 348 298, 299, 295, 295, 295, 297, 347 348 298, 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 295, 295, 297, 347 348 299, 295, 295, 295, 295, 295, 295, 295,			161			257, 295
- 2要数		- デルタ法	274		組み合わせ - 層別	239
- 2要数		- 2次形式 191, 274	, 339		組合せ数 - ガンマ関数	313
- パラメータ 70, 156, 298 311, 337, 363, 430 - 分析ツール 388 - ヘッセ行列 184 - ワルド統計量 106 共分散行列の計算 - パラメータ 160 共分散行列の計算 - パラメータ 160 共分散行列の計算 - パラメータ 160 共分散行列 383 - 共変量が2変量 440 - 狭寒の意味での 425 - 交互作用 423, 426 - 杉本・橘田(2011) 432 - スネデガー・コクラン(1972) 424 - 広統的 425 - 芳賀(2009) 432 - パラメータ 383 共変量 オヤセット 309 - でラメータ 383 中で現化 447 - 花数 294 - 複数 294 - 複数 294 - 複数 295, 255, 257, 347 348 - 黒効果予測値 255, 454 - 撮傷千月比 348 - 撮傷千月比 348 - 操傷千月比 348 - 操傷所列風が - 2因子の共分散分析 449 glm() 関数 - R 40 - が形状パラメータ - 過分散の 213 - 人の2項分布 216 - 形状パラメータ - 過分散の 213 - 人の2項分布 216 - がけって・ボアソン回帰 263 - が表・前田(2011) 432 - 大変上検定 95 - 計算補度 - 保精度失数 393 計算有能 - Excel 106 - 市場十 447 - 花数 294 - 複数 83 - 可視化 447 - 花数 294 - 複数 83 - 部分母集団 448 - 部分母集団 294 大変量が変量 - 共分散分析 445 - 複数 83 - 部島寸法 448 - 部分母集団 294 大変量が変量 - 共分散分析 445 - 海の変量での - 共分散分析 425 ク散分析表 - 調差分散 430 行列 - 利のではなく 139 行列 - 利でではなく 139 行列 - 積の計算 138 - 95%信頼区間 342 - 映煙習慣と年齢 131 - 95%信頼区間 433 - 共分散分析 425 - 海分散の解消 342 - 映煙習慣と年齢 131 - 95%信頼区間 433 - 共分散分析 425 - 海分散の解消 342 - 映煙習慣と年齢 131 - 95%信頼区間 433 - 共分散分析 425 - 海の散行所 361 - 東沙散分析 423 - 東沙散分析 423 - 東沙散分析 425 - 海の散行所 361 - 東沙散分析 423 - 東が東が 255 - 本門線 255 - 本門						
311, 337, 363, 430 - 分析ツール - 分析ツール - 小・マンヤ行列 - ハッセ行列 - ワルド統計量 - ワルド統計量 - ワルド統計量 - リカ散行列(ア) - パラメータ - 大分散行列(ア) - パラメータ - 大変をした。 中学校の意味での - 大変をした。 中央でのでは、 161 を表します。 162 を表します。 163 を表します。 164 を表します。 165 を表します。 166 を表します。						
- 分析ツール - 388 - 帰別散布図 255, 454 - ヘッセ行列 184 - 損傷千月比 348 - 損傷千月比 348 255 共分散行列の計算 - パラメータ 160 共分散行列の計算 - パラメータ 160 共分散行列の計算 - パラメータ 160 共分散行列 383 に 上 大変量が2変量 440 表表の意味での 425 - 炎互作用 423, 426 - 杉本・橘田(2011) 432 - スネデガー・コクラン(1972) 424 - 大変質 (2009) 432 - パラメータ 383 計算不能 - 佐蛇白 176 治理 277 - ボンタータ 383 計算不能 - 佐蛇白 176 治理 277 - ボンター 184 277 - ボンター 184 277 - ボンター 185 277 - ボンツン分布 216 形状パラメータσ - ガンマ・ボアソン回帰 263 - 分散 179 - デザイン行列 95, 109 179 - 同帰分析 383 - ボンツンク 185 - ボンマン・ボンツンク 185 - ボンツンク 185 - ボンツンク 185 - ボンマン・ボンマン・ボンマン・ボンマン・ボンマン・ボンマン・ボンマン・ボンマン					,,	
- ヘッセ行列 - ワルド統計量						
- ワルド統計量 共分散行列12分 ・ パラメータ 大分散行列12分 ・ パラメータ 大分散行列10計算 ・ パラメータ ・ Excel 442 ・ 共分散行列 383 ・ 共変量が2変量 440 ・ 挟袭の意味での 425 ・ 杉本・橘田(2011) 432 ・ 乙を充作的 424 ・ 大方翼(2009) 432 ・ ボラメータ 383 共変量 - オフセット 309 ・ 四帰分析 383 ・ 電勘 + 注の節性 176 ・ 部分母集団 294 ・ 部分母集団 294 ・ 部分母集団 294 ・ 部分母集団 294 ・ おかの意味での 425 ・ 方翼(2009) 432 ・ 万妻(2009) 432 ・ 一型帰分析 383 ・ 市副 十法 448 ・ 市場 日本 177 との前 ・ 市場 日本 187 との自帰分析 160 ・ 部分母集団 294 ・ 北変量が2変量 - 共分散分析 440 共変量が2変量 - 共分散分析 440 大変量が2変量 - 共分散分析 440 大変量の影響 - 電気特性 447 大変量の影響 - 電気特性 447 大変量が2変量 - 共分散分析 425 ・ 三 kcel の回帰分析 160 格子グラフ - S-PLUS 257 交互作用 - 般化線形モデル 250 格子グラフ - S-PLUS 257 交互作用 - 般化線形モデル 250 格子グラフ - S-PLUS 257 交互作用 - 般化線形モデル 250 格子グラフ - S-PLUS 257 交互作用 - 般化線形モデル 250 本表の散の解消 342 ・ 奥煙型慣と年齢 131 行列・預の音いの内側 - 一致 139 行列の百いの内側 - 一致 139 行列の積 - Mmult() 関数 140 行列の面積 - Mmult() 関数 140 行列の間が 回帰分析 429 行列の間が 188 ・ 188 ・ 188 ・ 198 ・ 188 ・ 189 ・						
共分散行列2(分) - パラメータ 184 共分散行列の計算 - パラメータ 160 共分散分析 - アーミティジら(2001) 424 - Excel 442 - 共分散行列 383 - 共変量が2変量 440 - 大変の意味での 425 - 交互作用 423, 426 - 杉本・橘田(2011) 432 - 石木ガー・コクラン(1972) 424 - ボラメータ 383 共変量 - オフセット 309 共変量 - オフセット 309 共変量 - オフセット 309 共変量 - オフセット 309 共変量 - オフセット 309 土で数 294 - 花数 294 - 海筋 448 - 第分母集団 447 - 花数 294 - 海筋一寸法 448 - 部島寸法 448 - 部分母集団 294 共変量の意味での - 共分散分析 425 - 海の音味での 427 - ボラダータ 383 共変量 - オフセット 309 計算不能 - Excel 106 - 指果のグラフ化 - 統計ソフト 319 検量線 - 未知検体 163 - 現化 447 - 北数 294 検量線 - 未知検体 163 - 東変量の影響 - 電気特性 447 大変量の影響 - 電気特性 447 共変量の影響 - 電気特性 447 大変量の影響 - 電気特性 447 大変量の影響 - 電気特性 447 大変量の意味での - 共分散分析 425 分散分析表 - 誤差分散 430 行列 - 列行ではなく 139 行列 - 列行ではなく 139 行列の百レの内側 - 一致 139 行列の百レの内側 - 一致 139 行列の百しの内側 - 一致 139 行列の百れ Mmult() 関数 140 - 共分散行列 425 - 海の計算 138 - 95% [額区間 33 - 共分散分析 425 - 東ク散行列 429 - 共分散行列 429 - 共分散分析 423, 426 - 海外か析 425 - 東ク散行列 429 - 共分散行列 429 - 共分散行列 429 - 共分散分析 423, 426 - 海外が 423, 426 - 神味 118 - 95% [額区間 33 - 共分散行列 429 - 共分散分析 425 - 東ク散行列 429 - 共分散分析 425 - 東ク散分析 426 - 共分散分析 427 - 東壁型間と年齢 131 - 95% [額区間 433 - 中味 118 - 中味 118 - 中味 118						
#分散行列の計算 - パラメータ 160 #分散分析 - アーミティジら(2001) 424 #線返し不揃い - 2因子の共分散分析 449 glm() 関数 - R 40						
#分散分析 - アーミティジら(2001) 424 - Excel 442 - 共分散行列 383 - 共変量が2変量 440 - 狭義の意味での 425 - 交互作用 423, 426 - 杉本・橘田(2011) 432 - スネデガー・コクラン(1972) 424 - 伝統的 424 - 芳賀(2009) 432 - バラメータ 383 - 東変量 - オフセット 309 - 四帰分析 383 - 可視化 447 - で複数 294 - 複数 83 - 部品寸法 448 - 部分母集団 294 - 部分母集団 294 - 東変量の意味での - 共分散分析 425 - 育別の意味での 425 - 市別分析 440 - 大変量の意味での 425 - 一切 425 - 一切 426 - 一切 427 - 一切 427 - で表 428 - 市別 429 - で表 429 - 市別 425 - 市別 426 - 市別 427 - 市別 428 - 市別 428 - 市別 429 - 市別 429 - 市別 425 - 市別 425 - 市別 426 - 市別 427 - 市別 428 - 市別 428 - 市別 429 - 市別 429 - 市別 425 - 市別 425 - 市別 425 - 市別 425 - 市別 426 - 市別 427 - 市別 428 - 市別 428 - 市別 429 - 市別 42			184		- 平滑線	296
- Excel 442		共分散行列の計算 - パラメータ	160		グラフ作成の手順 - Excel	161
- Excel 442		共分散分析 - アーミティジら(2001)	424		繰返し不揃い - 2因子の共分散分析	449
- 共分散行列 383 け 形状の比較 - ガンマ・ポアソン分布 216 - 共変量が2変量 440 形状パラメータ - 過分散σ 213 - 交庭作用 423, 426 形状パラメータσ - ガンマ・ポアソン回帰 263 - 杉本・橘田(2011) 432 - 分散 214 - スネデガー・コクラン(1972) 424 計画行列 - デザイン行列 95, 109 - 伝統的 424 - 大度比検定 95 - 芳賀(2009) 432 計算式エディタ - JMP 76 - アラメータ 383 計算式エディタ - JMP 76 - アラメータ 383 計算主 管権度実数 393 共変量 - オフセット 309 計算不能 - Excel 106 - 回帰分析 383 げた - ゼロの値 176 - 可視化 447 結果のグラフ化 - 統計ソフト 319 - 複数 83 現実的な対応 - Excelの回帰分析 163 - 東変量が2変量 - 共分散分析 448 こ 交通事故 - ボアソン回帰 16 - 部中生団 447 大通車 - ボアソン回帰 16 株子グラフ - S-PLUS 257 交互作用 - 一般化線形モデル 250 大変量が2変量 - 共分散分析 425 一過分散の解消 342 行列 - 積の計算 138 - 95%信頼区間 33 行列 - 積の計算 <td></td> <td></td> <td>442</td> <td></td> <td></td> <td></td>			442			
- 共変量が2変量 ・狭義の意味での ・杉本・橋田 (2011) 423, 426 形状パラメータ - 過分散σ 213 - 校互作用 ・ 水本・橋田 (2011) 432 形状パラメータσ - ガンマ・ポアソン回帰 ・ 合統的 ・ 大寶 (2009) 263 - ボラメータ ・ ボラメータ ・ ボラメータ ・ ボラメータ ・ で回帰分析 ・ 可視化 ・ 花数 ・ 可視化 ・ 花数 ・ 部品 寸法 ・ 部分母集団 ・ 部分母集団 ・ 部分母集団 ・ 一 が分析表 - 誤差分散 ・ 新金子変量の影響 - 電気特性 ・ 大変量の影響 - 電気特性 ・ 大変重の影響 - 一般化線形モデル ・ こ 交互作用 ・ 一般で ・ 一般で配置し ・ 大変型で調と年齢 ・ 131 ・ 大分散分析 ・ 大力数分 ・ 大分散分析 ・ 大分散分析 ・ 大分散分析 ・ 大分散分析 ・ 大分散分析 ・ 大分散分析 ・ 大分散分析 ・ 大力散分 ・ 大力数分 ・ 大力数分 大力数分 大力数分 大力数分 大力数分 大力数分 大力数分 大力数分 大力数分 大力				1+		
・ 疾義の意味での ・交互作用 423, 426 ・ 杉本・橘田 (2011) 432 ・ 水本・橘田 (2011) 432 ・ 大本・橘田 (2011) 432 ・ 大本・橘田 (2011) 432 ・ 大本・橘田 (2011) 432 ・ 大藤 (福田 (2011) 432 ・ 大藤 (福田 (2011) 432 ・ 大藤 (本術) 424 ・ 大藤 (2009) 432 ・ 大藤 (2009) 433 ・ 大藤 (2009) 434 ・ 大藤 (2009) 434 ・ 大藤 (2009) 434 </td <td></td> <td></td> <td></td> <td> '/</td> <td></td> <td></td>				'/		
・ 交互作用 423, 426 ・ 杉本・橘田(2011) 432 ・ スネデガー・コクラン(1972) 424 ・ 伝統的 424 ・ 芳賀(2009) 432 ・ パラメータ 383 共変量・オフセット 309 ・ 回帰分析 383 ・ 可視化 447 ・ 花数 294 ・ 複数 83 ・ 部品寸法 448 ・ 部分母集団 294 共変量が2変量・共分散分析 448 ・ 部分母集団 294 共変量の影響・電気特性 447 突動の影響・電気特性 447 決変の意味での・共分散分析 425 分散分析表・誤差分散 430 行・列・列行ではなく 139 行列の看いの内側・一致 139 行列の積・Mmult() 関数 140 行列の積・Mmult() 関数 140 行列財数・回帰分析 423 行列財数・回帰分析 423 行列財数・回帰分析 423 一等味 131 一等味 131 一等味 125 一方が分析 423 一方列の積・Mmult() 関数 140 一時味 125 一時味 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
- 杉本・橘田(2011) 432 - スネデガー・コクラン(1972) 424 - 大度比検定 95 109 - 伝統的 424 - 大度比検定 95 計算式エディタ - JMP 76 - 大度比検定 95 計算式エディタ - JMP 76 計算構度 - 倍精度実数 393 計算不能 - Excel 106 176 - 可視化 447 - で複数 294 - 複数 83 - 部品 寸法 448 - 密分母集団 294 + 変量が2変量 - 共分散分析 440 + 大変量の影響 - 電気特性 447 株義の意味での - 共分散分析 425 分散分析表 - 誤差分散 430 行列 - 預付ではなく 139 行列の互いの内側 - 一致 139 行列の看 - Mmult() 関数 17列 (列数 - Mmult() 関数 17列 (列数 - Mmult() 関数 17列 (列列数 - 回帰分析 100 - 共分散分析 425 - 呼味 131 - 95% 信頼区間 433 (万列を出すとそっぽを向かれる - 統計教育 399 - 推定値を計算 310 - JMP 123						
- スネデガー・コクラン(1972) 424 計画行列 - デザイン行列 95, 109 - 伝統的 424 - 尤度比検定 95 - 芳賀(2009) 432 計算式エディタ - JMP 76 - バラメータ 383 計算有度 - 信精度実数 393 共変量 - オフセット 309 計算不能 - Excel 106 - 回帰分析 383 計算不能 - Excel 106 - 可視化 447 結果のグラフ化 - 統計ソフト 319 - 花数 294 検量線 - 未知検体 163 - 複数 83 - 北東政・な対応 - Excelの回帰分析 160 - 部品寸法 448 大変通事故 - ボアソン分布 10 - 部分母集団 294 格子グラフ - S-PLUS 257 交互作用 - 一般化線形モデル 250 交互作用 - 一般化線形モデル 250 ・ 変工作用 - 一般化線形モデル 250 一級分散の解消 342 行・列 - 利行ではなく 139 - 場別の所属 433 行列の積 - Mmult() 関数 140 - 共分散行列 423 426 行列を出すとそっぽを向かれる - 統計教育 399 - 時味 118 行列関数 - 回帰分析 361 - 質的 - 95% - 95% - 推放の計算 - 上東分散分析 423 426 - 時味						
- 伝統的 424 - 光度比検定 95 - 芳賀(2009) 432 - パラメータ 383 井変量 - オフセット 309 計算不能 - Excel 106 176 176 176 176 176 176 176 176 176 17						
- 芳賀(2009) 432 計算式エディタ - JMP 76 - パラメータ 383 計算精度 - 倍精度実数 393 共変量 - オフセット 309 計算不能 - Excel 106 - 回帰分析 383 計算不能 - Excel 106 - 可視化 447 結果のグラフ化 - 統計ソフト 319 - 花数 294 検量線 - 未知検体 163 - 商お 寸法 448 ご交通事故 - ポアソン分布 10 - 部分母集団 294 恒等リンク - ポアソン回帰 16 共変量が2変量 - 共分散分析 440 格子グラフ - S-PLUS 257 共変量の影響 - 電気特性 447 校差の意味での - 共分散分析 250 狭義の意味での - 共分散分析 425 三庭作用 - 般化線形モデル 250 狭義の意味での - 共分散分析 425 三過分散の解消 342 行・列 - 列行ではなく 139 - 奥煙習慣と年齢 131 行列の直いの内側 - 一致 139 - 共分散行列 423 行列の積 - Mmult() 関数 140 - 共分散分析 423, 426 行列を出すとそっぽを向かれる - 統計教育 399 - 呼味 118 行列関数 - 回帰分析 361 - 質的 - 9 - 推定値を計算 310 - JMP 123			424			95, 109
- パラメータ 383 計算精度 - 倍精度実数 393 共変量 - オフセット 309 計算不能 - Excel 106 - 回帰分析 383 計算不能 - Excel 106 - 可視化 447 結果のグラフ化 - 統計ソフト 319 - 花数 294 検量線 - 未知検体 163 - 複数 83 現実的な対応 - Excelの回帰分析 160 - 部品寸法 448 ご交通事故 - ボアソン分布 10 - 部分母集団 294 格子グラフ - S-PLUS 257 共変量が2変量 - 共分散分析 440 格子グラフ - S-PLUS 257 共変量の影響 - 電気特性 447 左交直作用 - 一般化線形モデル 250 狭義の意味での - 共分散分析 425 - 温分散の解消 342 行・列 - 列行ではなく 139 - 過分散の解消 342 行・列 - 積の計算 138 - 95%信頼区間 433 行列の積 - Mmult() 関数 140 - 共分散分析 423, 426 行列を出すとそっぽを向かれる - 統計教育 399 - 吟味 118 行列関数 - 回帰分析 361 - 質的 - 95 - 推定値を計算 310 - JMP 123		- 伝統的	424		- 尤度比検定	95
- パラメータ 383 計算精度 - 倍精度実数 393 共変量 - オフセット 309 計算不能 - Excel 106 - 回帰分析 383 計算不能 - Excel 106 - 可視化 447 結果のグラフ化 - 統計ソフト 319 - 花数 294 検量線 - 未知検体 163 - 複数 83 現実的な対応 - Excelの回帰分析 160 - 部品寸法 448 ご交通事故 - ボアソン分布 10 - 部分母集団 294 格子グラフ - S-PLUS 257 共変量が2変量 - 共分散分析 440 格子グラフ - S-PLUS 257 共変量の影響 - 電気特性 447 左交直作用 - 一般化線形モデル 250 狭義の意味での - 共分散分析 425 - 温分散の解消 342 行・列 - 列行ではなく 139 - 過分散の解消 342 行・列 - 積の計算 138 - 95%信頼区間 433 行列の積 - Mmult() 関数 140 - 共分散分析 423, 426 行列を出すとそっぽを向かれる - 統計教育 399 - 吟味 118 行列関数 - 回帰分析 361 - 質的 - 95 - 推定値を計算 310 - JMP 123		- 芳賀(2009)	432		計算式エディタ - JMP	76
共変量 - オフセット309計算不能 - Excel106- 回帰分析383げた - ゼロの値176- 可視化447結果のグラフ化 - 統計ソフト319- 花数294検量線 - 未知検体163- 複数83現実的な対応 - Excelの回帰分析160- 部品寸法448元 交通事故 - ポアソン分布10- 部分母集団294権子グラフ - S-PLUS257共変量の影響 - 電気特性447校主の意味での - 共分散分析425交互作用 - 一般化線形モデル250狭義の意味での - 共分散分析表 - 誤差分散430- 過分散の解消342行・列 - 列行ではなく139- 奥煙習慣と年齢131行列 - 積の計算138- 95%信頼区間433行列の百いの内側 - 一致139- 共分散行列429行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育 行列関数 - 回帰分析361- 資的- 95- 推定値を計算310- JMP123					計算精度 - 倍精度実数	393
- 回帰分析 383						
- 可視化 447 結果のグラフ化 - 統計ソフト 319 - 花数 294 検量線 - 未知検体 163 - 複数 83 現実的な対応 - Excelの回帰分析 160 - 部品寸法 448 ご交通事故 - ポアソン分布 10 - 部分母集団 294 権子グラフ - S-PLUS 257 共変量の影響 - 電気特性 447 本子グラフ - S-PLUS 257 交互作用 - 一般化線形モデル 250 を互作用 - 一般化線形モデル 250 分散分析表 - 誤差分散 430 - 過分散の解消 342 行・列 - 列行ではなく 139 - 喫煙習慣と年齢 131 行列 - 積の計算 138 - 95%信頼区間 433 行列の積 - Mmult() 関数 140 - 共分散行列 423, 426 行列を出すとそっぽを向かれる - 統計教育 399 - 呼味 118 行列関数 - 回帰分析 361 - 質的 295 - 推定値を計算 310 - JMP 123						
- 花数 - 複数 - 部品寸法 - 部分母集団 共変量が2変量 - 共分散分析 共変量の影響 - 電気特性 学売の意味での - 共分散分析 - 列行ではなく 行列 - 列行ではなく 行列 - 積の計算 行列の預・Mmult() 関数 - 推定値を計算294 448 448 449 440 440 440 441 440 441 442 443 444 444 445 446 447 447 448 448 449 449 449 440 440 440 441 442 443 444 444 445 446 447 447 448 449 449 449 440 440 441 442 444 444 445 446 447 447 448 449 449 444 449 444 444 444 444 444 444 444 444 444<						
- 複数 83 現実的な対応 - Excelの回帰分析 160 - 部品寸法 448 こ 交通事故 - ポアソン分布 10 - 部分母集団 294 恒等リンク - ポアソン回帰 16 共変量が2変量 - 共分散分析 440 格子グラフ - S-PLUS 257 共変量の影響 - 電気特性 447 交互作用 - 一般化線形モデル 250 狭義の意味での - 共分散分析 425 - 區分散の解消 342 行・列 - 列行ではなく 139 - 喫煙習慣と年齢 131 行列 - 積の計算 138 - 95%信頼区間 433 行列の積 - Mmult() 関数 140 - 共分散分析 423, 426 行列を出すとそっぽを向かれる - 統計教育 399 - 吟味 118 行列関数 - 回帰分析 361 - 質的 295 - 推定値を計算 310 - JMP 123						
- 部品寸法448こ 交通事故 - ポアソン分布10- 部分母集団294恒等リンク - ポアソン回帰16共変量が2変量 - 共分散分析440格子グラフ - S-PLUS257共変量の影響 - 電気特性447交互作用 - 一般化線形モデル250狭義の意味での - 共分散分析425- 區分散の解消342行・列 - 列行ではなく139- 喫煙習慣と年齢131行列 - 積の計算138- 95%信頼区間433行列の互いの内側 - 一致139- 共分散行列429行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育399- 吟味118行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123						
- 部分母集団294恒等リンク - ポアソン回帰16共変量が2変量 - 共分散分析440格子グラフ - S-PLUS257共変量の影響 - 電気特性447交互作用 - 一般化線形モデル250狭義の意味での - 共分散分析425- 區分散の解消342行・列 - 列行ではなく139- 喫煙習慣と年齢131行列 - 積の計算138- 95%信頼区間433行列の互いの内側 - 一致139- 共分散行列429行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育399- 吟味118行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123						
共変量が2変量 - 共分散分析 共変量の影響 - 電気特性440 447格子グラフ - S-PLUS 交互作用 - 一般化線形モデル257 交互作用 - 一般化線形モデル狭義の意味での - 共分散分析 分散分析表 - 誤差分散 行・列 - 列行ではなく 行列 - 積の計算 行列の互いの内側 - 一致 行列の積 - Mmult() 関数 行列を出すとそっぽを向かれる - 統計教育 - 推定値を計算430 139 138 139 140 139 140 139 140 140 140 150 160			448			10
共変量の影響 - 電気特性447交互作用 - 一般化線形モデル250狭義の意味での - 共分散分析425- Excel252, 345, 429分散分析表 - 誤差分散430- 過分散の解消342行・列 - 列行ではなく139- 喫煙習慣と年齢131行列 - 積の計算138- 95%信頼区間433行列の互いの内側 - 一致139- 共分散行列429行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育399- 吟味118行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123		- 部分母集団	294		恒等リンク - ポアソン回帰	16
共変量の影響 - 電気特性447交互作用 - 一般化線形モデル250狭義の意味での - 共分散分析425- Excel252, 345, 429分散分析表 - 誤差分散430- 過分散の解消342行・列 - 列行ではなく139- 喫煙習慣と年齢131行列 - 積の計算138- 95%信頼区間433行列の互いの内側 - 一致139- 共分散行列429行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育399- 吟味118行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123		共変量が2変量 - 共分散分析	440		格子グラフ - S-PLUS	257
狭義の意味での - 共分散分析425- Excel252, 345, 429分散分析表 - 誤差分散430- 過分散の解消342行・列 - 列行ではなく139- 喫煙習慣と年齢131行列 - 積の計算138- 95%信頼区間433行列の互いの内側 - 一致139- 共分散行列429行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育399- 吟味118行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123		共変量の影響 - 電気特性	447		交互作用 - 一般化線形モデル	
分散分析表 - 誤差分散430- 過分散の解消342行・列 - 列行ではなく139- 喫煙習慣と年齢131行列 - 積の計算138- 95%信頼区間433行列の互いの内側 - 一致139- 共分散行列429行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育399- 吟味118行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123						
行・列 - 列行ではなく139- 喫煙習慣と年齢131行列 - 積の計算138- 95%信頼区間433行列の互いの内側 - 一致139- 共分散行列429行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育399- 吟味118行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123						-
行列 - 積の計算138- 95%信頼区間433行列の互いの内側 - 一致139- 共分散行列429行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育399- 吟味118行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123						
行列の互いの内側 - 一致139- 共分散行列429行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育399- 吟味118行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123						
行列の積 - Mmult() 関数140- 共分散分析423, 426行列を出すとそっぽを向かれる - 統計教育399- 吟味118行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123						
行列を出すとそっぽを向かれる - 統計教育 399- 吟味118行列関数 - 回帰分析 361- 質的295- 推定値を計算 310- JMP123						
行列関数 - 回帰分析361- 質的295- 推定値を計算310- JMP123		~				
- 推定値を計算 310 - JMP 123		行列を出すとそっぽを向かれる - 統計教育	399		- 吟味	118
- 推定値を計算 310 - JMP 123		行列関数 - 回帰分析	361		- 質的	295
			310			
150 17/9/						
			-20	1		.10

					_		
۲	- 主効果モデル			343		- 誤差平方和	362
	- 推定値		299,	433		50%致死量 - 生物統計	201
	- 積			428		50%程度 - 二変量の関係	440
	- たすき掛け			111		50%程度の緩い - 確率楕円	441
	- デザイン行列			299		5点法 - 菌の増殖	269
	- デザイン変数			428		異なる実験条件 - データの併合	237
	- デザイン変数間の積			450		Covariance.S() 関数 - Excel	389
	- 2本の2次曲線		132,			covbオプション - 共分散行列	307
	- 副次的な解析		132,	297		- GENMOD	307
	- 副がらかる暦が - 分散分析表	246	42.4				
			424,			- GENMODプロシジャ	337
	- ポアソン回帰	123,	297,			個別データ - 95%信頼区間	158
	- ポアソン重回帰			249		- 正確な95%信頼区間	166
	- McCullagh and Nelder (1989)			342		個別データの95%信頼区間 - ポアソン回帰	286
	- 名義尺度			252		- 予測区間	379
	- 目視的に解釈			346		個別データの分散 - JMP	406
	- 薬剤と濃度			122		個別の95%信頼区間 - 95%信頼区間	44
	- 尤度比検定			123		Collett(2003) - 逆推定	163
	- 予測プロファイル		251,	344		Correl() 関数 - Excel	389
	- 量的			295		コロニー数 - Ames試験	109
	交互作用プロファイル - 折れ線グ	ラフ		300		- 過分散	238
	- JMP		297,	336		- ガンマ・ポアソン分布	238
	- 予測プロファイル			334		- ネズミチフス菌 32	2, 237
	交互作用モデル - 主効果モデル			431		- 吉村ら(1992)	237
	交通事故の件数 - 負の2項分布			209		Combin() 関数 - Exccel	208
	効力を比較 - 平行線検定法			277		Contrustステートメント - GLMプロシジャ	428
	効力比 - 近似の95%信頼区間	273.	280,	289		コントロールキー - シフトキー	138
	- 正確な95%信頼区間	,	274,			混合 - ポアソン分布	210
	- デルタ法		_, .,	38		混合分布 - 部分集団	221
	- 2次方程式の解			274	さ	細菌 - 用量反応性試験	36
	- 分散			37		細菌を用いた試験 - 2×2要因配置	32
	効力比ρ - 傾きの比			273		最大化 - 対数尤度	51
	- デルタ法			273		最後の水準 - デザイン変数	454
	効力比の 95 %信頼区間 - 非線形[司倡	276,			最後の水準を-1 - 対比型デザイン行列	332
	効力比の推定 - 橘田・福島(2013)		270,	278		最後の水準を基準 - SAS	331
	効力比の統計 - 高橋(2004)	,		269		最初の水準 - ref=first	331
	勾配比 - 佐久間ら(2017)			269		最初の水準を基準 - R言語	455
	- 複数の直線			269		- Lsmeans	456
	勾配比検定法 - 杉本()			276		- (0,1)型デザイン変数	
	恒等・リンク関数		74			- (0,1/至/ りイン 复 数 - デザイン 変 数	327 309
		177		181			
		177,	258,			最小2乗分散分析法 - 不釣り合い型データ 最小2乗平均 - Lsmeans 329, 421	449
	甲羅の色 - 後体部の棘			243			1
	- 最小2乗平均			457		- Ismeansパッケージ	452
	甲羅の幅 - ガンマ・ポアソン回帰			228		- 可視化	445
	- サテライト数			244		- 甲羅の色	457
	- 説明変数			228		- SASユーザの方言	460
	- ゼロ過剰ガンマ・ポアソン回帰			233		- 算術平均	444
	- プロファイル	=		249		- JMPユーザの方言	460
	甲羅の幅か体重か - ポアソン重回	帰		246		- 高橋ら(1989)	421
	高年齢層 - 頭打ち現象			206		- 竹内ら(1989)	421
	合成分散 - デルタ法			164		- 調整済み平均	443
	後体部の棘 - 甲羅の色			243		- ポアソン回帰	457
	誤差範囲 - 中心点からの距離			341		- 方言	421
	誤差分散 - 分散分析表			430			2, 449
	誤差分布 - 分布を同定			284		- 予測プロファイル 421, 438	, 453
	誤差平方和 $-S_e$			71		最小極値分布 - シグモイド曲線	203
	- 回帰直線からのズレ			154		最大モデル - 完全モデル	368
	- 完全モデル			368		最大化 - ソルバー 69, 353	, 411
						- 対数尤度 6	63, 67

			1	
さ	- 逐次的	63	さ 散布図の活用のヒント - Excel	414
	- ニュートン・ラフソン法	68	算術平均 - 最小2乗平均	444
	最適化 - optim() 関数	68	残差 - デビアンス	359
	最尤解 - 挟み撃ち法	66	- バイアスの補正	382
	最尤法 - ソルバー	352	残差デビアンス - 逸脱度	321
	- 対数尤度	65	残差の比較 - スチューデント化	382
	- 反復重み付き回帰	68	残差の分散 - スチューデント化残差	364
	細菌の増殖 - 佐久間(1977)	269	残差プロット - JMP	375
	佐久間(1977) - 細菌の増殖	269	し GLMプロシジャ - Estimeteステートメント	428
	佐久間ら(2017) - 勾配比	269	- Contrustステートメント	428
	- 平行線検定法	277	- デザイン変数	454
	佐久間(1977) - 平行線検定法	277	GENMOD - ガンマ・ポアソン分布	265
	SAS - OnDemand SAS	354	- covbオプション	307
	- 共分散行列	37	- SAS	30
	- 最後の水準を基準	331	- Scale=Pearson	306
	- GENMOD	30	- zinbオプション	266
)5, 354	- ゼロ過剰負の二項分布	266
	- デザイン変数	328	- Type3	306
	- DATAステップ 30)5, 354	- 対比型デザイン変数	307
	- 統計ソフト	328	- dist=negbin	316
			_	
	- Proc genmod	306	- Dist=poisson	306
	- PROCステップ 30)5, 354	- negbinオプション	265
	- ポアソン回帰	37	- param=ref ref=first	316
	- 無償	31	- - 負の二項回帰	265
	- ref=first	331	- ポアソン回帰	30
	SAS and R - 臨床評価研究会(ACE)(2017)	354	- Link=log	306
	SAS Institute (2016) - 尤度残差	377	- Waldカイ2乗	31
	SAS/GENMOD - 各種の残差	377	- Wald検定	307
	- 各種の残差統計量	378	GENMODプロシジャ - オフセット offset	355
	- ゼロ過剰ポアソン回帰	262	- 過分散 scale= pearson	355
	- dist=zipオプション	262	- covbオプション	337
	- 分布の設定	262	- SAS	305, 354
				-
	- ポアソン回帰	377	- 高橋(2002)	354
	- 未加工残差	377	- 負の2項回帰	358
	- 尤度残差	377	- 分布 dist=negbin	358
	- 4種の残差プロット	378	- 分布 dist=poisson	355
	SAS/GENMODE - JMP/一般線形モデル	185	- ポアソン回帰	356
	SASデータセット - proc print	306	- 4種の残差	377
	SASとR - 臨床評価研究会(2018)	293	- リンク link=log	355
	SASユーザの方言 - 最小2乗平均	460	$\Sigma(\beta^{\wedge})$ - 共分散行列	151
	SAS無償版 - 高波·舟尾(2016)	354	シグマ - ドレーパ・スミス(1968)	135
	殺人被害者 - Agresti(2013)	258	シグマを使うと嫌われる - 統計教育	399
	- 分布の同定	258	シグマを使った計算 - デザイン行列	135
	雑草の種子 - ポアソン分布	13	シグマ的 - 積和の計算	140
	- 有害種子	14	シグモイド曲線 - ロジスティック曲線	26
	サテライト数 - カブトガニ 5	6, 243	- 最小極値分布	203
	- 甲羅の幅	244	- 死亡率	195
	- 体重	244	- 上限	206
	差の推定値 - 95%信頼区間	435	- 直接あてはめ	201
	差分 - 尤度比カイ2乗	100	- 同時あてはめ	420
	- 回帰の平方和	369	- 標準正規分布	200
	SumProduct() 関数 - Excel 75, 140, 21		- ロジスティック回帰	419
	- 度数 n _i	210	- ロジスティック分布	102
	SumSq() 関数 - Excel 140, 15	55, 387	シグモイド曲線状 - 薬理作用	277
	- 平方和	155	事故件数 - 人工データ	210
	3因子 - 要因配置型	323	自己責任 - ダミー変数	107
	3種 - 対数尤度	359	事後的に - 95%信頼区間	410
	散布図 - 確率楕円	41	指数 - 対数効力比	283
			1022	-00

				1	
し	指数関数 - 線形化		84	し - 層別ヒストグラム 2	39
	指数推定值 - 対数推定値		314	- 層別確率楕円 2	49
	自然科学の統計学 - 行列計算の結	果	409		87
	- デザイン行列	/ \	407		31
		4.60			
	- 東大統計学教室編(1992)	160,			06
	- 2次多項式		407	- 多変量の相関 3	88
	下付き - セル書式の設定		136	- デザイン変数 3	28
	質的 - 交互作用		295		33
	質的変数 - ダミー変数				
			327		96
	- デザイン変数		327		96
	杉本•橘田(2011) - 共分散分析		432	- 2次式のあてはめ 4	05
	実験計画法 - 要因配置型		297	- 二変量の関係	27
	実数化 - 成功数		313	- 非線形回帰のあてはめ 276, 2	
	失敗の数の分布 - 負の二項分布				
			313		18
	失敗数 - 負の2項分布		207		15
	指定値ゼロ0 - ソルバー	275,	283	- プロビット解析 2	.02
	シフトキー - コントロールキー		138	- プロファイル尤度	28
	CV一定 - 対数変換		284		06
	死亡者数 - 10万人比		23	, v	71
	- 冠動脈心疾患		88	- ポアソン回帰 16,	
	死亡率 - 冠動脈心疾患		195	- ポアソン分布	15
	- シグモイド曲線		195	- 補2重対数 2	04
	- 上限		93		68
	- 対数		196	- 予測プロファイル 246, 297, 3.	
	- 2項分布		195		05
	- 正規分布曲線		201	JMP/一般線形モデル - SAS/GENMODE 1	85
	下野(2010) - Rのglm.nb		318	JMP15 - 適合度検定 不一致 2	42
	- カウントデータ		293		92
	- 負の二項分布	316,			60
		310,			
	尺度 - 過分散		307		60
	尺度パラメータσ - 負の2項分布		313	JMP - ポアソン回帰 4	58
	Shapiro-WilkのW検定 - 正規分布		34	自由度 - 分散分析表 1	56
	JMP - 一般化線形モデル		74	収縮試験 - モルモット回腸 2	77
	- 計算式エディタ		76		71
	- 微分の機能		76		23
	- 偏微分		75		25
	- グラフ・ビルダー		295	- 95%信頼区間 4	17
	- ボックス・プロット		295	10万人比での95%信頼区 - 喫煙者 4	19
	- 一変量の分布		33	and the second s	19
	- 一般化線形モデル	100			94
		100,	380		
	- 応答局面法		441		00
	- オフセット		24	- デザイン行列ベース 390, 3	93
	- 回帰分析		170	- 偏差平方和ベース 3	90
	- 重ね合わせプロット		84	重回帰のモデル式 - ポアソン回帰 3.	25
	- 過分散パラメータ		241		90
	- Gamma Poisson Probability()		316		21
	- ガンマPoisson分布		214		$\cdot 00$
	- 逆推定		170	- 相関行列 4	21
	- 95%信頼区間の計算式		171	- 予測プロファイル 4	21
	- 共分散行列		338		73
		55 257		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		55, 257,			26
	- 交互作用		123		69
	- 交互作用プロファイル	297,	336	- 総平方和 3	69
	- 個別データの分散		406	- Null deviance 3	20
	- 残差プロット		375		43
	- 推定値の共分散		337	· ·	98
	- ゼロ過剰ポアソン分布	221			
		221,	224		15
	- ゼロ強調負の2項分布		227	主効果モデル - 過分散を反映 3	01

L	- 交互作用	343	す 推定値を計算 - 行列関数	310
	- 主効果予測値	346	水準間の差 - デザイン変数	445
	- ソルバー	351	- 予測プロファイル	434
	- 対比型デザイン変数	334	水準間の差の推定 - 対比	427
	- 探索的な解析	346	Superfusion法 - 灌流	277
	- ポアソン回帰	327	数学ソフト - WolframAlpha	77
	- 予測プロファイル	302	数学的な解説 - ガンマ・ポアソン分布	217
	主効果予測値 - グラフ・ビルダー	348	- 負の2項分布	217
	- 主効果モデル	346	杉本(我楽多) - 勾配比検定法	276
	- 損傷千月比	346	- 平行線検定法	283
	種子数 - 久保(2012)	84		
			1 🗸	
	種子の数 - 有害雑草	63	Scale=Pearson - GENMOD	306
	種子数 - 久保(2012)	359	スコアベクトルU - ヘッセ行列H	80
	- 生育環境別	294	stdresdev=s - スチューデント化デビアンス	355
	- 体サイズ	40	スチューデント化 - 残差の比較	382
	- 地域別	294	- テコ比	372
	出現確率 - 尤度比検定	97	- デビアンス	359
	寿命試験データ - 高橋(2015)	70	- デビアンス残差 45, 372,	
	- ワイブル回帰	70	- Pearson残差 376,	
	順位和検定 - 新月と満月	28	- 標準化	377
	書式 - イタリック	136	スチューデント化デビアンス - stdresdev=s	355
	- 太文字	136	スチューデント化デビアンス残差 - テコ比	374
	使用上の注意 - 標準残差	367	スチューデント化残差 - 残差の分散	364
	上限 - シグモイド曲線	206	- 通常の回帰分析	364
	- 死亡率	93	- テコ比	367
	- ロジスティック曲線	94	スネデカー・コクラン(1972) - 有害雑草の種	13
	上限をパラメータ - プロビット曲線	206	- 有害雑草	63
	上限を持つ2本 - ロジスティック回帰	420	- 共分散分析	424
	情報行列 - Fisherの情報量	72	- 偏差平方和ベース	393
	- ヘッセ行列	72	世 正規方程式 - 平方和の分解	162
	初期値 - パラメータβ	80	成功数 - 実数化	313
	初期パラメータ - 重みなしの回帰	180	成功数	211
	初期値 - 対数尤度	352	成功数をと固定 - 負の2項分布	207
	- ドブソン (2008)	180	正確な - 95%信頼区間	168
	- 反復	180	正確な95%信頼区間 - 逆推定	165
	植物の体サイズ - 久保(2012)	40	- 効力比 274,	
	新月と満月 - アルトマン(1999)	27	- 個別データ	166
	- 順位和検定	28		292
	信頼区間 - 共分散行列	21	- 2次式の解の公式	291
	信頼区間付き - 予測プロファイル	341	- 平行線検定法	281
	新村(1983a,b) - 規準化データ	400	正規性 - 適合度検定	34
	- 行列計算	400	正規分布 - 打ち切りデータ	70
	- 重回帰分析	400	- Shapiro-WilkのW検定	34
	新村(1983c) - 掃き出し演算子	400	- W検定	34
	診断プロット - 一般化線形モデル	380	正規分布曲線 - 死亡率	201
	- ポアソン回帰	379	正規方程式 - 重み付き回帰	177
	人工データ - ドブソン(2008)	77	- 回帰分析	143
	- ポアソン回帰	79	- 角	143
	人口統計 - 母集団の人数	88	- 偏微分	71
	人工データ - 事故件数	210	生物検定法 - 平行線検定法	278
	- ドブソン(2008)	136, 361	生物統計 - 50%致死量	201
す	推定値 - ガンマ・ポアソン回帰	230	生物統計ハンドブッ - 臨床評価研究会(201	293
/	- 95%信頼区間	403	積 - Χβ	137
	- 共分散	16	· · · · · · · · · · · · · · · · · · ·	428
	- 交互作用	299, 433	表生17/1 積の計算 - 行列	138
	- ポアソン回帰	299, 433 65	積和 - X \$	137
	・ ホテノン回帰 推定値の共分散 - JMP	337	傾和 - Ap 積和の計算 - シグマ的	140
	推定値の共分散 - JMP 推定値の分散 - 2次形式	337	類型の計算 - シグマ的 説明変数 - 甲羅の幅	228
	1世紀世V7月取 - 2がルバ	339	������������������������������������	44ð

_	45 LL 45 BT			
せ	絶対参照 - Excel	8	そ - バーシカラー種	386
	切片 - オフセット	90, 326	- 分析ツール	388
	切片を共通 - 2本の回帰直線	36	総平均 - Lsmeans	438
	切片 - 縮小モデル	369	総平方和 - 回帰の平方和	362
	- 年齢層別オフセット	196	- 縮小モデル	369
	切片がない - 尤度比検定	103	ソルバー - アドイン	69
	切片のみ - ポアソン回帰	74	- Excel	43, 50, 68
	切片を含めない - オプション	137	- オフセット	351
	切片を共通 - 2本の回帰直線	119	- ガンマ・ポアソン分布	218
	- ポアソン回帰	287	- 逆推定	168
	セル書式の設定 - 下付き	136	- 最大化	69, 353, 411
	セル同士の積「*」 - Excel	181	- 最尤法	352
	(0, 1)型 - デザイン行列	115	- 指定値ゼロ 0	275, 283
	(0,1)型デザイン変数 - 最初の水準を基		- 主効果モデル	351
	Zero-Inflated - ゼロ過剰	221	- 正確な95%信頼区間	168, 292
	zinbオプション - GENMOD	266	- ゼロ過剰ポアソン分布	223
	- ゼロ過剰負の二項分布	266	- 対数尤度	202, 353
	ゼロ・データ - 対数リンク	256	- 負の2項分布	202, 333
	ゼロ・ポアソン・ガンマ - 分布間の比較	267	- 分析ツール	69
	ゼロの値 - げた	176	- 平行線検定法	281
	ゼロ過剰 - Cameron and Trivedi (1998)		- ポアソン回帰	
		221	- かノノン四帰 - ロジスティック回帰	352
	- Zero-Inflated	221		102
	- ポアソン分布	207, 221	損傷数 - カウント・データ	323
	ゼロ過剰ガンマ・ポアソン回帰 - Excel	266	- 船舶の前方部	324
	- 確率分布	235	- ポアソン回帰	329
	- ガンマ・ポアソン回帰	233	損傷数データ - デザイン行列	328
	- 甲羅の幅	233	損傷千月比 - グラフ・ビルダー	348
	ゼロ過剰ガンマ・ポアソン分布 - 回帰分		- 主効果予測値	346
	- 確率関数	225	た Times New Roman - フォント	136
	ゼロ過剰ポアソン回帰 - AICc	261	Type I の平方和 - 逐次型	431
	- Excel	261	Type II の平方和 - 主効果モデル	431
	- SAS/GENMOD	262	Type III の平方和 - JMP	431
	ゼロ過剰ポアソン分布 - 確率関数	221, 225	Type3 - GENMOD	306
	- JMP	221, 224	体重 - サテライト数	244
	- ソルバー	223	対数尤度 - 最大化	51
	ゼロ過剰割合 - pzero オプション	263	対数リンク - ポアソン回帰	42
	ゼロ過剰負の二項分布 - GENMOD	266	体サイズ - 種子数	40
	- zinbオプション	266	体重 - プロファイル	249
	ゼロ強調負の2項分布 - JMP	227	対角要素 - 重み	411
	洗浄水の温度 - 予測プロファイル	435	- 重み行列	374
	線形化 - 指数関数	84	- 共分散行列	363
	- リンク関数	84	- 分散	153, 363
	全体の平方和 - 平均からの偏差	154	対数 - オフセット	47
そ	相対参照 - Excel	8	- 95%信頼区間	412
	層別散布図 - 回帰分析	255	- 死亡率	196
	- グラフ・ビルダー	255	対数ガンマ関数 - Excel	216
	層別 - 組み合わせ	239	- Gammaln() 関数	313
	- ヒストグラム	238	対数ポアソン分布? - ポアソン分布	176
	層別ヒストグラム - JMP	239	対数リンク - オフセット	88, 125, 195
	層別因子 - 奥野ら(1981)	423	- 重み	411
	層別因子を含む - 回帰分析	423	- 95%信頼区間	191, 410, 414
	層別確率楕円 - 確率楕円	249	- JMP	87
	- JMP	249	- ゼロ・データ	256
	層別散布図 - グラフ・ビルダー	454	- 2次曲線	125
	相関行列 - アイリスデータ	386	- 2次式	192
	- 共分散行列	386	- 2本の直線	127
	- 重回帰分析	421	- 偏微分	85
	- 多変量データ	386		186, 255, 410
	ク 久主/ /	500	м. / / У шли 04,	100, 200, 710

た	対数効力比 - 指数	283	た 多変量データ - 共分散行列 383, 1	
	- 平行線検定法	281		386
	対数推定値 - 指数推定値	314	多変量の相関 - JMP	388
	対数変換 - CV一定	284	ダミー変数 - 1.5	106
	- 変動係数CV	284	- 0.5	106
	対数尤度 $-\ln L$	64		107
	- ガンマ・ポアソン回帰	229		327
	- 最大化	63, 67		108
	- 最尤法	65	- デザイン変数 251, 1	
	- 3種	359		327
	- 初期値	352	I ~	147
	- ゼロ過剰ガンマ・ポアソン回帰	233		393
	- ビロ週州カンマ・ホテラン回帰 - ソルバー			
		202, 353		255
	- 分散分析表	156		346
	- ポアソン回帰	228		243
	- 飽和モデル	360, 368		297
	対数尤度の差の2倍 - デビアンス	372		294
	対数尤度の比較 - 4種のモデル	227		133
	対数尤度関数 - 2階の偏微分行列	68	逐次的 - 最大化	63
	- ニュートン・ラフソン法	68		341
	- 偏微分	70		310
	対数用量 - 平行線検定法	277		188
	対比 - 水準間の差の推定	427		443
	- パラメータ関数	428	直接あてはめ - シグモイド曲線	201
	対比(1,-1)型 - JMP	331	つ 通院回数 - Cameron and Trivedi (1998)	218
	対比型 - (1,-1)	113	- 過分散	218
	- デザイン行列	112, 298	通常の - 回帰分析	361
	- デザイン変数 428	, 450, 458	通常の回帰分析 - スチューデント化残差	364
	- ポアソン回帰	110	通常の残差 - Pearson残差	360
	対比型, 過分散 - ポアソン回帰	333		112
	対比型デザイン行列 - 最後の水準を -			153
	対比型デザイン変数 - GENMOD	307	· · · · · · · · · · · · · · · · · · ·	153
	- 主効果モデル	334		457
	対比型のデザイン行列 - 一般化線形モラ			316
	- 名義尺度	249	_	306
	退役軍人 - 癌の発生	46	-	262
	退役軍人の癌の発生 - アーミテージら(2			262
	代謝活性化 - DMOS	33	適合度検定 - Pearsonのカイ2乗	15
	代替物質T - 陽性対照薬S	37		242
	高波·舟尾(2016) - SAS無償版	354	適合度統計量 - デビアンス	44
	高橋ら(1989) - 最小2乗平均	421	Perarson残差	44
	- 4種の平方和	455	適合度の検定 - ポアソン分布	14
	高橋(2002) - GENMODプロシジャ	354		240
	高橋(2002) - GENMOD/ロンプャ 高橋(2004) - 効力比の統計	269, 269		
		*		241
	- 平行線検定法	278	適合度検定 - 正規性	34
	高橋(2006) - S-PLUS	257		370
	高橋(2013a) - 逆推定	163		370
	高橋(2013b) - Excel 回帰分析	163		374
	高橋(2015) - 寿命試験データ	70		374
	高橋(2017) - プロビット法	176, 201		359
	- ロジット法	70		372
	高橋(2018) - 打ち切りデータ	70		367
	高橋(2019a) - カブトガニ	243		366
	高橋(2019b) - 投与前値	425		360
	竹内(1979) - 逆推定	163		364
	竹内ら(1989) - 最小2乗平均	421		367
	多項式の中心化 - JMP	406		366
	たすき掛け - 交互作用	111	デザイン行列 - 一般化線形モデル	18

て - 2次形式		22	て データの併合 - 異なる実験条件 237
- (1, 0)型		115	データ系列の書式 - Excel 414
- (1, 2)型		115	データ分析ツール - 回帰分析 137
- Excel		329	データ変換 - 補正式 187
- X		136	Deviance - デビアンス 320
- 重みの行列		178	Deviance Residuals - デビアンス残差 320, 372
- 回帰パラメータ		147	Devianse Residuals - Residual deviance 321
- 回帰式の表記		136	デビアンス - 逸脱度 44, 320, 359
- 回帰分析		152	- カイ2乗値 47, 320, 337
- 矩形データ		109	- 残差 359
- たろと一タ - 計画行列	0.5		
	93,	109	· · · · · · · · · · · · · · · · · · ·
- 交互作用		299	- 対数尤度の差の2倍 372 - 372 372 373 372 373 373 373 373 373 373
- 自然科学の統計学		407	- 適合度統計量 44, 370
- (0, 1)型		115	デビアンス残差 - Deviance Residuals 320
- 損傷数データ		328	- スチューデント化 45, 372, 381
- 対比型	112,		- Deviance Residuals 372
- ダミー変数		108	- Pearson残差 381
- 転置		139	- ピアソン残差 320
- ドレーパ・スミス(1968)		135	- 平方根 372
- 2×2		108	デビアンス残差 ε_i - 平方和 373
- 2本の回帰直線		119	DMOS - 代謝活性化 33
- パラメータの共分散行列		270	デルタ法 - 95%信頼区間 164
- 偏差平方和		148	- 共分散行列 274
- ポアソン回帰		329	- 近似の95%信頼区間 273, 289
- (-1, 1)型		115	- 効力比 38
- 尤度比検定		95	- 効力比ρ 273
プレスル - 角括弧 [・・・]		136	- 合成分散 164
- 括弧 (・・・) - 矩形データ		136	
		136	- 2 次形式 164
- 共分散行列		161	- 2次形式 274
- 反応Y		141	- 偏微分 164
- 太い外枠で括る口		136	偏微分 - デルタ法 273
デザイン行列ベース - 重回帰	390,		転置 - デザイン行列 139
- ドレーパ・スミス(1968)		398	- Transpose() 関数 139
- 偏差平方和ベース	390,	398	転置記号 - ^T 112
デザイン行列をベース - 偏差平方和		135	転置行列列 - Transpose() 関数 152
デザイン行列を用いた解析 - シグマ		135	電気特性 - 共変量の影響 447
デザイン変数 - R言語		455	伝統的 - 共分散分析 424
- Lsmeansの推定値		451	伝統的な回帰分析 - ガラスの天井 146
- 交互作用		428	伝統的な方法 - ガラスの天井 159
- 最後の水準		454	- 95%信頼区間 159
- 最初の水準を基準		309	- ポアソン回帰 159
- SAS		328	電気特性 - 奥野ら(1981) 440
- GLMプロシジャ		454	電気特性対 - ボックス・プロット 443
- 質的変数		327	と 等高線プロファイル - 応答局面法 441
日本が多数 - JMP		328	投与前値 - 共分散分析 425
- 水準間の差			- 高橋(2019) 425
	450	445	
· · · · · · · · · · · · · · · · · · ·	450,		
- ダミー変数	251,		- 2 次多項式 160
- 2水準間の差		434	- 自然科学の統計学 407
- 分類変数		317	等高線図 - 回帰式 396
- 炉A4を基準		446	- JMP 396
デザイン変数間の積 - 交互作用		450	- 予測プロファイル 397
DATAステップ - SAS	305,		等分散性の検定 - Bartlettの検定 34
- プログラミング機能		354	統計ソフト - 結果のグラフ化 319
- 読み込みポインター		305	- SAS 328
データセット - JMP		133	- McCullagh and Nelder (1989) 327
データの選択 - Excel		414	統計教育 - 行列を出すとそっぽを向かれる 399

と	- シグマを使うと嫌われる	399	に - ロジット 93, 195,	200
	動的なグラフ - 予測プロファイル	422	2項分布の確率 - 尤度	201
	同時あてはめ - シグモイド曲線	420	二項分布 - 一般化線形モデル	26
	特異的な変動 - 浮き彫り	347	2 次形式 - デルタ法	164
	土壌体積中 - オフセット	294	2 次式 - 95%信頼区間	159
	度数 ni - SumProduct() 関数	210	2 次式の解の公式 - 逆推定	166
			2 次多項式 - 東大統計学教室編(1992)	
	平均と分散ドブル (2000)オフト 1	210		160
	ドブソン(2008) - オフセット	195	2次形式 - デザイン行列	22
	- 冠動脈心疾患	23, 49, 88	- VecQuadraticc()関数	171
		25, 186, 410	2次回帰 - 95%信頼区間	194
	- 喫煙習慣	415	- ポアソン回帰	194
	- 初期値	180	2次曲線 - 95%信頼区間	401
	- 人工データ 7	77, 136, 361	- 対数リンク	125
	- ポアソン回帰	16	- 2本 125,	130
	富山ら(2004) - 用量反応試験	36	- 2本のポアソン回帰	416
	富山•杉本(2004) - 用量反応性試験		- 年齢	130
	- 用量反応試験	119	- 芳賀(2009)	401
	Transpose() 関数 - Excel	20, 139	2次形式 - 95%信頼区間	248
		52, 387, 430	- 共分散行列 191, 274,	
	- 転置	139	- 推定値の分散	339
	true - Poisson.dist() 関数	64	- デルタ法	274
	Trellis(格子)グラフ - Rグラフィックス	295	2次式 - Excel	402
	- R言語	349	- 対数リンク	192
	- S-PLUS 25	57, 295, 348	- 複合	275
	Trellis作図 - 久保訳 (2009)	257, 295	- 複合式	283
	ドレーパ・スミス(1968) - 原著第3版	146	- 分散および共分散	276
	- シグマ	135	2次式の95%信頼区間 - ブラック・ボックス	406
	- 推奨	146	2次式のあてはめ - JMP	405
	- デザイン行列	135	- 便宜的な方法	193
	- デザイン行列ベース	398	2次式のグラフ - Excel	404
	- 非線形推定序説	173	2次式の解の公式 - 正確な95%信頼区間	291
	- 偏差平方和ベース			
4.		398	2次多項式 - 95%信頼区間	408
	中西(2016) - 非線形最小2乗法	174	- 自然科学の統計学	407
15	2因子の共分散分析 - 繰返し不揃い	449	2次方程式の解 - 平行線検定法	281
	2×2 - デザイン行列	108	3次多項式 - 予測区間	408
	- 要因配置実験	108	2種類の検定 - 分割表	95
	2×2 の行列 - 共分散	153	2乗の項 - 年齢	415
	2×2の分割表 - JMP	96	2水準間の差 - デザイン変数	434
	- ピアソンのカイ2乗検定	95	2値反応 - ベルヌーイ分布	98
	- 尤度比検定	95	2変数 - 95%信頼区間	247
	2×2要因配置 - 細菌を用いた試験	32	- 共分散行列	247
	2階の偏微分 - ヘッセ行列	18	- 予測	247
	2階 - 偏微分行列	68	二変量の関係 - 50%の確率楕円	440
	2階の偏微分行列 - H ヘッセ	70	- JMP	27
			2本 - 回帰直線	
	- 対数尤度関数	68		119
	- ヘッセ行列	70	- 2次曲線 125,	
	2群間比較 - ポアソン回帰	28	2本の2次曲線 - 交互作用 132,	
	- 尤度比検定	29	2本のポアソン回帰 - 2次曲線	416
	2群間の比較 - ポアソン回帰	104	2本の回帰直線 - 共通の傾き	277
	2群間比較 - (非喫煙・喫煙)	126	- 切片を共通	119
	- 2項分布	100	- デザイン行列	119
	2元配置型 - ポアソン回帰	110	2本の直線 - 対数リンク	127
	2項分布 - ポアソン分布	10	ニュートン・ラフソン法 - 打ち切りデータ	70
	- 一般化線形モデル	100	- 最大化	68
	- 死亡率	195	- 対数尤度関数	68
	- 2群間比較	100	- 反復過程	74
	- 2年间12戦 - プロビット			
		200	- 反復計算	72
	- 補2重対数	200, 203	- 反復計算の実際	80

		155 L	1	- 4
に	- 反復重み付き	175		74
	- ポアソン回帰	72		86
	- ワイブル回帰	70		97
	Null deviance - 縮小モデル	320	· · · · · · · · · · · · · · · · · · ·	72
ね	NegBinom.dist() 関数 - Exccel	209	反復計算の実際 - ニュートン・ラフソン法	80
	- Excel	313	反復重み付き - ニュートン・ラフソン法 1	75
	ネズミチフス菌 - Ames試験	32	反復重み付き回帰 - Excel	19
	- コロニー数	32, 237	- 最尤法	68
	年齢 - 2次曲線	130	- ポアソン回帰 16, 285, 2	288
	- 2乗の項	415		92
	年齢層別オフセット - 切片	196		95
σ	濃度 - 未知検体	163		95
V	野沢 (1992) - テコ比	366		05
	- ハット行列	366	• • •	38
14	Bartlettの検定 - 等分散性の検定			38 96
17		34		
	Var.S() 関数 - Excel	387		370
	Binom.dist() 関数 - Excel	12		370
	バイアスの補正 - 残差	382		15
	倍精度実数 - 計算精度	393	Pearson残差 - スチューデント化 376, 3	
	芳賀(2009) - 共分散分析	432		860
	- 2次曲線	401		881
	芳賀(2010) - 逆推定	163		376
	掃き出し演算子 - 新村(1983c)	400	- プロット	59
	挟み撃ち法 - 最尤解	66	Perarson残差 - 適合度統計量	44
	バーシカラー種 - アイリスデータ	386	ピアソン - カイ2乗 3	314
	- 相関行列	386	ピアソンのカイ2乗 - 過分散 3	315
	ハット行列 - 重み行列	374		95
	- テコ比	374		320
	- 野沢 (1992)	366		263
	ハット行列H - テコ比	360		119
	ハット行列の対角要素 - テコ比	364		277
	バートレットの検定 - 分散	285		238
		293, 309	非線形回帰 - 効力比の95%信頼区間 276, 2	
	- 共変量	293, 309	非線形回帰のあてはめ - JMP 276, 2	
	原田(2017) - 薬物の効力比較	278	71.11.12.1.13.1	73
	原田·吉池(2017) - 平行線検定	278		74
	param=ref ref=first - GENMOD	316	非線形推定序説 - ドレーパ・スミス(1968) 1	
		156, 298		220
	311, 337,	-		76
	- 共分散行列 $\Sigma(\beta^{})$	184		239
	- 共分散行列の計算	160		867
	- 共分散分析	383		297
	- 分散	70		17
	- 偏微分	173	- 基準との差 1	17
	パラメータβ - 初期値	80	- JMP 1	18
	- 偏微分	79	標準化 - スチューデント化 3	377
	パラメータμ - 偏微分	71	標準誤差で基準化 - Pearson残差 3	376
	パラメータの共分散行列 - デザイン行列	270		867
	パラメータの推定 - 偏差平方	145		67
	パラメータの推定値 - 解釈	330		201
	パラメータ関数 - 対比	428		200
	パラメータ推定 - ガンマ・ポアソン分布	214		72
	- ガンマ関数	214		201
			•	
	- 負の2項分布	210	2 · · · · · · · · · · · · · · · · · · ·	201
	反復計算 - Excel	21	V	64
	反応 <i>Y</i> - デザイン行列 <i>X</i>	141		36
	反復 - 重み付き回帰	182		297
	- 初期値	180	複合 - 2次式 2	275

S	複合式 - 2次式	283	ふ プロファイル - 甲羅の幅	249
	複数 - 共変量	83	- 体重	249
	- ポアソン分布	210	プロファイル尤度 - JMP	28
	複数の共変量 - ポアソン回帰	83	分散 - ガンマ・ポアソン分布	241
	複数の直線 - 勾配比	269	- ポアソン分布	11
	不釣り合い型データ - 最小2乗分散分析法	449	分散/平均 - 比	38
	復帰突然変異試験 - Ames試験	32	分布 dist=negbin - GENMODプロシジャ	358
	太い外枠で括る□ - デザイン行列X	136	- 負の2項回帰	358
	太文字 - 書式	136	分布 dist=poisson - GENMODプロシジャ	355
	負の2項回帰 - オフセット	313	分布を同定 - 誤差分布	284
	- 各種の推定	322	分割表 - Agresti (2013)	99
	- GENMODプロシジャ	358	- 簡便公式	99
	- 分布 dist=negbin	358	- 2種類の検定	95
	- 南ら(2013)	314	分散 - 95%信頼区間	340
	負の2項分布 - Agresti(2013)	213	- 形状パラメータσ	214
	- 位置パラメータ	213	- 効力比	37
	- 位置パラメータμ	313	- 対角要素 153,	363
	- 岩崎(2010)	217	- テコ比	367
	- 過分散	60	- バートレットの検定	285
	- ガンマ・ポアソン回帰	263	- パラメータ	70
	- ガンマ・ポアソン分布 54, 60, 213	313	- 負の二項分布	214
	- ガンマ関数	211	分散/平均 - 過分散 210,	324
	- 形状パラメータ	213	分散/平均の比 - 過分散	296
	- 交通事故の件数	209	分散および共分散 - 2次式	276
	- 失敗数	207	分散分析表 - 交互作用 346, 424,	430
	- 尺度パラメータσ	313	- 自由度	156
	- JMP	215	- 対数尤度	156
	- 数学的な解説	217	- 平方和	362
	- 成功数が実数	211	- 偏差平方和	154
	- 成功数をと固定	207	分析ツール - 共分散行列	388
	- ソルバー	211	- 相関行列	388
	- パラメータ推定	210	- ソルバー	69
	- ポアソン分布	209	分析ツールの回帰分析 - Excel 398,	402
	- ポアソン分布のあてはめ	211	分布の設定 - dist=zipオプション	262
	- 蓑谷(2010)	212	分布の同定 - AICc	258
	負の逆行列 - (- H) ⁻¹	75	- 殺人被害者	258
	負の二項回帰 - GENMOD	265	分布間の比較 - AICc	267
	- negbinオプション	265	- ゼロ・ポアソン・ガンマ	267
	負の二項分布 - 失敗の数の分布	313	分類変数 - デザイン変数	317
	- 下野(2010) 316	, 318	← 平滑化 - Excel	67
	- 分散	214	平方和の分解 - 回帰平方和+誤差平方和	162
	部品寸法 - 共変量	448	- 正規方程式	162
	部分集団 - 混合分布	221	平滑線 - グラフ・ビルダー	296
	部分母集団 - オフセット	125	平均 からの偏差 $-S_T$	154
	- 共変量	294	- 全体の平方和 $S_{\it T}$	154
	ブラック・ボックス - 2次式の95%信頼区間	406	平均μ - 位置パラメータ	213
	ブレ - 重み付き回帰	175	平均と分散 - 度数 n;	210
	Proc genmod - SAS	306	平行な直線 - 共分散分析	277
	proc print - SASデータセット	306	平行線(0, 1)型 - 傾きを共通	121
		, 354	平行線のあてはめ - モルモット回腸	279
	プログラミング機能 - DETAステップ	354	平行線検定 - 原田・吉池(2017)	278
	プロット - Pearson残差	59	平行線検定法 - 効力を比較	277
	プロビット - 2項分布	200	- 佐久間ら(2017)	277
		, 201	- 佐久間(1977)	277
	- Finney (1971)	201	- 杉本()	283
	- Finney (1978)	201	- 正確な95%信頼区間	281
	プロビット解析 - JMP	202	- 生物検定法	278
	プロビット曲線 - 上限をパラメータ	206	- ソルバー	281

へ - 対数効力比	281	へ 便宜的な方法 - 2次式のあてはめ	193
- 対数用量	277	ほ Poisson.dist() 関数 ‐Excel	8, 63, 411
- 高橋(2004)	278	- true	64
- 2次方程式の解	281	- false	64
平方根 - デビアンス残差	372	ポアソン回帰 - 一般化線形モデル	16
平方和 - 回帰パラメータ	361	- オフセット	24
- SumSq() 関数	155	- 95%信頼区間	22
- デビアンス残差εί	373	- 恒等リンク	16
- 分散分析表	362	- SAS	37
VecQuadratic() 関数 - JM	P 406	- GENMOD	30
VecQuadraticc()関数 - JM	IP 171	- JMP	16, 82
- 2次形式	171	- 対数リンク	42
ベクトルw^ - マトリックスW	180	- ドブソン (2008)	16
ベストモデル - 過剰モデル		- 2群間比較	28
ベータと入力 - ギリシャ文		- 反復重み付き回帰	16
別々 - 回帰直線	124	ポアソン分布 - 確率関数	8
別々の切片 - 共通の傾き	278	- 過分散	7
ヘッセ行列 - 2階の偏微気		- 期待値	10
- 共分散行列	184	- 交通事故	10
- 情報行列	72	- 雑草の種子	13
- 2階の偏微分行列	70	- JMP	15
ヘッセ行列 H - スコアベク		- 適合度の検定	14
ベルヌーイ分布 - 2値反応		- 2項分布	10
変異コロニー数 - Ames試		- 分散	11
変動係数 - ポアソン分布の		ポアソン分布の形状 - 変動係数	9
偏回帰係数 - 奥野ら(198		ポアソン回帰 - AICc	260
偏差平方 - パラメータの推		- Excel	260, 314
偏差平方和ベース - 回帰		- Lsmeans	457
- 回帰分析	149	- オフセット	195, 309
- ガラスの天井	149	- 回帰の95%信頼区間	286
偏差平方和 - デザイン行		- 過分散	355
- 分散分析表	154	- 過分散 - 過分散の調整	259
偏差平方和 S_e - 偏微分	142	- 過分散を調整	293
偏差平方和ベース - アー	- '	- ガンマ・ポアソン回帰	228
- 奥野ら(1981)	393, 400	- 交互作用	297, 342
- 回帰パラメータの推定			177, 258, 368
- 重回帰	390	- 個別データの95%信頼区間	286
- スネデガー・コクラン(· · · · · · · · · · · · · · · · · · ·	- 最小2乗平均	457
- デザイン行列ベース	390, 398	- SAS/GENMOD	377
- ドレーパ・スミス (1968) 原業要士和ない。スープ		- GENMODプロシジャ	356
偏差平方和をベース - デ		- JMP - 大共用 エディ	458
偏微分 - WolframAlpha	77	- 主効果モデル	327
- 重み付き平方和	177	- 診断プロット	379
- JMP	75	- 人工データ	79
- 対数リンク	85	- 推定値	65
- 対数尤度関数	70	- 切片を共通	287
- デルタ法	164	- ソルバー	352
- パラメータ	173	- 損傷数	329
- パラメータβ	79		186, 255, 410
- パラメータμ	71	- 対数尤度	228
- 偏差平方和 S_e	142	- 対比型	110
偏微分ベクトル - U	70	- 対比型, 過分散	333
偏微分行列 - 2階	68	- 探索的解析	297
変異コロニー数 - Ames試	験 284	- 逐次増加	133
変化 - 過分散パラメータ	216	- デザイン行列	329
変換不能 - リンク関数	187	- 伝統的な方法	159
変動係数CV - 対数変換	284	- 2群間の比較	104
変量効果 - 標示因子	297	- 2元配置型	110

ほ	- 2次回帰		194	l め	- 対比型のデザイン行列		249
(4	- ニュートン・ラフソン法		72		面積の中・オフセット		294
	- 反復重み付き回帰	285.	288	* \	目視的に解釈 - 交互作用		346
	- 犯罪件数	-00,	105		モデル - 完全モデル	43	, 98
	- 複数の共変量		83		- 縮小モデル	43	, 98
	- 蓑谷(2013)		258		- 飽和モデル		43
	- 予測プロファイル		421		モデルのあてはめ - 逆推定		172
	- 4種の残差		372		モデル選択 - 尤度比検定		415
	- ロジスティック回帰		324		守屋ら(2018) - Rパッケージ		449
	ポアソン回帰のモデル式 - 重回帰		325			422,	
	ポアソン確率 - 有害種子		68		モルモット回腸 - 収縮試験		277
	ポアソン重回帰 - 交互作用 - 甲羅の幅か体重か		249 246		- histamine様物質 - 平行線のあてはめ		277279
	ポアソン分布 - 過分散		207	æ	薬剤と濃度 - 交互作用		122
	- 混合		210	`	薬物の効力比較 - 原田(2017)		278
	- ゼロ過剰	207.	221		薬理作用 - シグモイド曲線状		277
	- 対数ポアソン分布?	,	176		厄介な問題 - 重み付き回帰		175
	- ピュアな		239	ゆ	U - 偏微分ベクトル		70
	- 複数		210		有害雑草 - 種子の数		63
	- 尤度比検定		104		有害種子 - 雑草の種子		14
	ポアソン分布のあてはめ - 負の2項分布	•	211		尤度比カイ2乗検定 - 満月と新月		28
	方言 - Lsmeans		421		尤度比検定 - Excel		29
	- 最小2乗平均		421		- 2群間比較		29
	飽和モデル - 完全モデル - 対数尤度	260	321 368		尤度 - <i>L</i> - 確率		64 64
	- 内奴儿及 - モデル	300,	43		- 2項分布の確率		201
	母集団の人数 - 人口統計		88		尤度 <i>L</i> - 確率 <i>P</i>		64
	補正式 - 調整		188		尤度関数 - 確率関数		64
	- データ変換		187		尤度残差 - SAS Institute (2016)		377
	補正値 - オフセット		196		- SAS/GENMOD		377
	ボックス・プロット - JMP		295		尤度比カイ2乗 - 差分		100
	- 電気特性対		443		尤度比のカイ2乗値 - Excel		96
	補2重対数 - JMP	200	204		尤度比検定 - Agresti (2013)		99
	- 2項分布 - リンク関数	200,	203 203		- 完全モデル - 計画行列		98 95
	maximaize() 最適化関数 - JMP		68		- 計画11列 - 交互作用		123
丰	McCullagh and Nelder(1989) - 貨物船		323		- 縮小モデル		98
6	McCullagh and Nelder (1989) - 交互作	用	342		- 出現確率		97
	- ダミー変数		327		- 切片がない		103
	- 統計ソフト		327		- デザイン行列		95
	Mmult() 関数 - Excel		430		- 2×2の分割表		95
	満月と新月 - 尤度比カイ2乗検定		28		- ポアソン分布		104
	- 犯罪の有無		95		- モデル選択		415
7.	未加工残差 - SAS/GENMOD		377		- Wald検定	72)	185
H	未知検体 - 検量線		163		有害雑草の種 - スネデカー・コクラン(19 有効数字 - 単精度実数	72)	13
	- 濃度 南ら(2013) - 負の2項回帰		163 314		有効数子 - 早有及夫数 有害雑草 - スネデカー・コクラン(1972)		393 63
	養谷(2010) - 負の2項分布		212		有害種子 - ポアソン確率		68
	蓑谷(2013) - ポアソン回帰		258	ょ	用量反応性試験 - 細菌		36
	μ - 位置パラメータ		66		- 富山・杉本(2004)		284
	魅力的な事例 - 奥野ら(1981)		422		用量反応試験 - 富山ら(2004)		36
	無視 - 過分散		309		- 富山・杉本 (2004)		119
む	無償 - SAS		31		要因配置型 - 実験計画法		297
	無償版 - OnDemand SAS	305,	354		- 3因子		323
12	名義尺度 - 一般化線形モデル		249		要因配置実験 - 2×2		108
め	- 交互作用		252		陽性対照薬S - 代替物質T 吉村ら(1992) - Ames試験	22	37
					三村ら(1992) - Ames武線 - コロニー数	32,	109 237
				ı	·		231

ょ	予測 - 2変数	247
	予測プロファイル - 一般用語ではない	448
	- Excel 247, 303	
	345, 421, 432	
	- Excelの散布図	249
	- Lsmeans	438
	- 回収液の濃度の差	436
		, 397
		, 344
	- 交互作用プロファイル	334
	- 最小2乗平均 421, 438	, 453
	- JMP 246, 297	, 334
	- JMPユーザの方言	460
	- 重回帰分析	421
	- 主効果モデル	302
	- 信頼区間付き	341
	- 水準間の差	434
	- 洗浄水の温度	435
	- ディフォルト	457
	- 等高線図	397
	- 動的なグラフ	422
	- ポアソン回帰	421
	- 予測値	397
	予測区間 - 個別データの95%信頼区間	379
	- 3次多項式	408
	予測値 - 外部ファイル	349
	- 予測プロファイル	397
	読み込みポインター - DATAステップ	305
	4種のモデル - 対数尤度の比較	227
	4種の残差 - GENMODプロシジャ	377
	- ポアソン回帰	372
	4種の残差の比較 - カブトガニの事例	379
	4種の残差プロット - SAS/GENMOD	378
	4種の平方和 - 高橋ら(1989)	455
	- Little (2002)	455
ò		, 295
ŋ	Littleら(2002) - 4種の平方和	455
	利便性 - 反復重み付き回帰	192
	量的 - 交互作用	295
		, 401
	- 回帰分析	159
	Link=log - GENMOD	306
	リンク link=log - GENMODプロシジャ	355
	リンク関数 - ロジット	25
		, 181
	- 線形化	84
	- 変換不能	187
	- 補2重対数	203
	- ロジット 93, 100	, 204
	臨床評価研究会(2017) - 生物統計ハンドブック	293
	臨床評価研究会(2017) - SASとR	293
	臨床評価研究会(ACE)(2017) - R&SAS	
れ	Residual deviance - 逸脱度	320
, -	- Devianse Residuals	321
	列の保存 - 一般化線形モデル	380
	列ベクトル - β	137
	- Y	137
	1	13/

れ	列行ではなく - 行・列	139
	ref=first - 最初の水準	331
	- SAS	331
ろ	炉A4を基準 - 回帰分析	446
	- デザイン変数	446
	ロイド - 貨物船の前方部の損傷数	323
	ロジスティック回帰 - 一般線形モデル	93
	- Excelソルバー	101
	- シグモイド曲線	419
	- 上限を持つ2本	420
	- ソルバー	102
	- ポアソン回帰	324
	ロジスティック曲線 - 下限・上限	94
	- シグモイド曲線	26
	- 上限	94
	ロジスティック分布 - シグモイド曲線	102, 204
	ロジット - JMP	205
	- 2項分布 93,	195, 200
		100, 204
	ロジット変換 - 回帰パラメータ	100
	- 逆ロジット	93
	ロジット法 - 高橋(2017)	70
わ	Y軸方向の差 - 回帰直線の差	278
	ワイブル回帰 - 寿命試験データ	70
	- ニュートン・ラフソン法	70
	割引係数 - テコ比	366
	Waldカイ2乗 - GENMOD	31
	Wald検定 - GENMOD	307
	- 尤度比検定	185
	ワルド検定 - 回帰パラメータ	184
	ワルド統計量 - 共分散行列	106

解析用ファイルー覧

ファイル名

第1章01 ポアソン確率.xlsx

第1章02_ポアソン_2項分布.xlsx

第1章03 種子数.jmp

第1章03 種子数.xlsx

第1章04 人工データ.jmp

第1章04 人工データ.xlsx

第1章05 冠動脈疾患.jmp

第1章05 冠動脈疾患.xlsx

第1章05 冠動脈疾患01反応.jmp

第1章05 冠動脈疾患01反応グラフ.jmp

第1章06_満月新月.jmp

第1章06 満月新月.xlsx

第1章06 満月新月 SAS.txt

第1章07 細菌2x2.jmp

第1章07 細菌2x2.xlsx

第1章08 変異原性試験.jmp

第1章08 変異原性試験.xlsx

第1章08 変異原性試験 SAS.txt

第1章09 久保 種子.jmp

第1章09 久保 種子.xlsx

第1章09 久保 種子 Cグラフ化.jmp

第1章10_軍人_癌.jmp

第1章10 軍人 癌.xlsx

第1章11 タバコと冠動脈疾患.jmp

第1章11 タバコと冠動脈疾患.xlsx

第1章12 通院回数.jmp

第1章12 通院回数.xlsx

第1章13 カブトガニ.jmp

第1章13 カブトガニ.xlsx

第1章13 カブトガニ 探索.jmp

第2章01_ポアソン確率.jmp

第2章01 種子数 尤度関数.xlsx

第2章02 種子数 ソルバー.xlsx

第2章03 種子数 ニュートン.xlsx

第2章03_種子数_偏微分.jmp

第2章04_人工データ.xlsx

第2章04_人工データ_偏微分式.jmp

第2章05_久保_種子C群.xlsx

第2章05_久保_種子_グラフ化.jmp

第2章05 久保 種子 偏微分式.jmp

第2章06 冠動脈疾患 2項分布.jmp

第2章06_冠動脈疾患_オフセット.xlsx

第2章06 冠動脈疾患 偏微分式.jmp

第2章06_冠動脈疾患グラフ.jmp

ファイル名

第3章01 満月新月 01.jmp

第3章01 満月新月 01.xlsx

第3章02 満月新月 01ロジット.jmp

第3章02 満月新月 01ロジット.xlsx

第3章03 満月新月 ポアソン.jmp

第3章03 満月新月 ポアソン.xlsx

第3章04_細菌_01型.jmp

第3章04 細菌 2x2.xlsx

第3章05 Ames 用量反.xlsx

第3章05 Ames 用量反応.jmp

第3章06_タバコと冠動脈疾患.jmp

第3章06_タバコと冠動脈疾患.xlsx

第3章06 タバコと冠動脈疾患b.jmp

第4章01 回帰_入門.xlsx

第4章02 回帰 正規方程式.xlsx

第4章03 回帰 逆行列.xlsx

第4章05_回帰_デザイン行列.xlsx

第4章06 回帰 逆推定.xlsx

第4章07 回帰 JMP.xlsx

第4章07 回帰_逆推定.jmp

第5章01 対数リンク.xlsx

第5章02 重み 計算式.xlsx

第5章03 重み 恒等.xlsx

第5章04 重み 2次式.jmp

第5章04_重み_2次式.xlsx

第5章04 重み 対数リンク.jmp

第5章04 重み 対数リンク.xlsx

第5章05 オフセット.jmp

第5章05 オフセット.xlsx

第5章05_オフセット2次.jmp

第5章06 プロビット.jmp

第5章06 プロビット.xlsx

第6章01_負の二項分布.xlsx

第6章01 負の二項分布 ポアソン.jmp

第6章02_ガンマポアソン.xlsx

第6章02_事故_ポアソン.jmp

第6章03_通院回数.jmp

第6章03 通院回数.xlsx

第6章03 通院回数グラフ.jmp

第6章04_ゼロ_ポアソン.jmp

第6章04 ゼロ ポアソン.xlsx

第6章05 ゼロ ガンマ・ポアソン.jmp

第6章05 ゼロ ガンマ・ポアソン.xlsx

ファイル名

第6章06_カブトガニ_ガンマポアソン.xlsx 第6章06_過大分散比較.jmp 第6章07 カブトガニ zero過剰ガンマポアソン.xlsx

第7章01_細菌2x2.jmp 第7章01_細菌2x2.xlsx 第7章02a_カブトガニ_クロス表.jmp 第7章02b_カブトガニ_回帰.jmp 第7章02c_カブトガニ_甲羅色_中.jmp 第7章02d_カブトガニ_グラフ・ビルダー.jmp 第7章02_カブトガニ_xlsx 第7章02_カブトガニ_プロファイル.xlsx 第7章03_被害者.jmp 第7章03_被害者.xlsx 第7章03_被害者_SAS.txt

第8章01_細菌の増殖_勾配比.jmp 第8章01_細菌の増殖_勾配比.xlsx 第8章02_ヒスタミン平行線.jmp 第8章02_ヒスタミン平行線.xlsx 第8章03_Ames_ポアソン.xlsx 第8章03_Ames 回帰_別々ポアソン.jmp

第9章01_花数.jmp 第9章01_花数.xlsx 第9章02_花数_交互作用.jmp 第9章02_花数_交互作用.xlsx 第9章03_花数_SAS.txt 第9章04_花数_オフセット.jmp 第9章04_花数_オフセット.xlsx 第9章04_花数_負の2項回帰_SAS.txt 第9章05_花数_負の2項.xlsx

第10章01_Ship Damage_データ.jmp 第10章01_Ship Damage_データ.xlsx 第10章02_Ship Damage_主効果.jmp 第10章02_Ship Damage_主効果.xlsx 第10章03_Ship Damage_予測プロファイル.xlsx 第10章03_Ship Damage_共分散.jmp 第10章04_Ship Damage_交互作用.jmp

ファイル名

第10章04_Ship Damage_交互作用.xlsx 第10章05_Ship Damage_主効果_予測.jmp 第10章05_Ship Damage_主効果_予測値.xlsx 第10章06_Ship Damage_ソルバー.xlsx 第10章06_Ship Damage_主効果.jmp 第10章07_Ship Damage.xlsx 第10章07_Ship Damage_SAS.txt

第11章02_人工データ_線形.jmp 第11章02_人工データ_線形.xlsx 第11章02_人工データ_線形.jmp 第11章03_ポアソン回帰_デビアンス残差.xlsx 第11章04_人工データ_4種の残差.xlsx 第11章04_人工データ_4種の残差.SAS.txt 第11章05_カブトガニ_4種の残差.jmp 第11章05_カブトガニ_4種残差.xlsx 第11章05 カブトガニ 転置 グラフ作成.jmp

第12章02_iris.jmp 第12章03_iris_相関行列.xlsx 第12章03_ガラス工程_偏差平方和ベース.xlsx 第12章04_ガラス工程.jmp 第12章04_ガラス工程_デザイン行列ベース.xlsx 第12章05_2次回帰_自然科学の統計学.xlsx 第12章05_芳賀2次回帰一DE改2-1 因子(量).xlsm 第12章05_芳賀_2次回帰.xlsx 第12章05_芳賀_2次式.jmp 第12章06_冠動脈心疾患.jmp 第12章06_冠動脈心疾患.xlsx 第12章07_タバコと冠動脈心疾患.jmp 第12章07_タバコと冠動脈心疾患.xlsx

第13章02_層別共分散.jmp 第13章02_層別共分散.xlsx 第13章03_2変量共分散.jmp 第13章03_2変量共分散.xlsx 第13章04_守屋_2因子共変量.jmp 第13章04_守屋_2因子共変量.xlsx 第13章05_カブトガニ.jmp 第13章05_カブトガニ.プロファイル.xlsx

著者紹介

高橋行雄(たかはしゆきお)

1971 年 中央大学理工学部管理工学科終了 富士通電算機専門学校研究科終了

同 年 日本ロシュ株式会社 研究所 研究統計課 前臨床および臨床試験の統計解析に従事

2002年 中外製薬株式会社 統計解析部

2011年 同社 退社

同 年 BioStat 研究所(株)設立 現在に至る

著書 毒性・薬効データの統計解析, サイエンティスト社, 1987 SAS による実験データの解析, 東京大学出版会, 1989 毒性試験データの統計解析, 地人書館, 1992

非売品,無断複製を禁ずる

第9回 続高橋セミナー 最尤法によるポアソン回帰分析入門

BioStat 研究所(株) 〒105-0014 東京都 港区 芝 1-12-3 の 1005 2021 年 1 月 高橋 行雄

 $\underline{\text{takahashi.stat@nifty.com}} \text{ , } FAX:03\text{-}342\text{-}8035$